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Abstract 
It is well known that homogeneous equilibrium methods for calculating the mass flux of initially 
subcooled or saturated liquids in short nozzles under-predict the measured values and various methods 
for estimating non-equilibrium effects have been presented in the past. It is shown in this paper that 
acceleration effects at the entrance of converging nozzles due to changing cross-sectional area can be 
the most significant cause of non-equilibrium. By properly accounting for non-equilibrium due to the 
fluid acceleration, single-phase flow methods can be used to estimate the pressure loss and mass flux in 
nozzles when rapid vaporization occurs at the nozzle throat. For these cases, choking occurs due to the 
rapid vaporization while the difference between the inlet pressure and choking pressure determines the 
nozzle mass flux.  
 
1. Introduction 
Thermal non-equilibrium phenomena have been recognized in the critical flow of fluids through short 
pipes and nozzles for several decades. According to Weisman and Tentner (1978), early studies of non-
equilibrium include the works of Benjamin and Miller (1942), Burnell (1947), Hodkinson (1937) and 
Silver and Mitchell (1945). It is clear that there are at least two mechanisms of thermal non-equilibrium 
in subcooled/saturated/low-quality flow: 

 Delay of vaporization (with metastable liquid) characteristic of subcooled/saturated inlet flow. 
 Non-equilibrium vaporization (maybe after some delay of vaporization) for some relaxation 

period of time characteristic of low inlet quality flow.  
The non-equilibrium phenomena addressed in this paper are the delay of vaporization and rapid phase 
transition associated with the rapid depressurization of initially slightly subcooled or saturated liquids.  
 
2. Rapid Phase Transitions 
When initially subcooled or saturated liquids are subjected to rapid pressure reduction below the liquid 
saturation pressure without bubble nucleation, the fluid is said to be superheated. The superheated 
state is thermodynamically metastable and typically the fluid begins to vaporize after a delay time which 
depends on the bubble nucleation rate. The bubble nucleation rate depends on the amount of 
superheating as described by bubble nucleation kinetic theory (Brennen, 1995). Correspondingly the 
amount of superheating is limited by thermodynamics. Thermodynamic stability analysis indicates phase 
change occurs spontaneously at the spinodal temperature (Lienhard et al., 1986). Therefore, when a 
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fluid is highly superheated, the vaporization commences and proceeds at a rapid rate. The process of 
rapid phase transition is called explosive boiling. The same bubble nucleation kinetic and 
thermodynamic stability analyses apply to various phenomena including Rapid Phase Transitions (RPT), 
Boiling Liquid Expanding Vapor Explosions (BLEVE) and flow through nozzles. Examples of RPT 
applications are found in Melhem and Hendrickson (2020) while BLEVE applications are found in 
Mengmeng (2007). The focus of this paper is the application of bubble nucleation kinetics and 
thermodynamic stability analyses to the flow of subcooled and saturated liquids through nozzles. The 
proposed method addresses known deficiencies of the Homogeneous Equilibrium Model (HEM) by 
providing a method to quantify non-equilibrium effects on calculated nozzle choking pressures and 
critical mass flow rates. 
 
3. Why Subcooled Flow Estimates Matter 
Numerous plant design and hydraulic applications, including pressure relief systems, require reasonable 
flow rate estimates of initially saturated or slightly subcooled liquids. Current methods, such as the 
HEM, underestimate the flow rate depending on the degree of liquid subcooling. The consequence can 
result in underestimating leak rates for certain scenarios or the selection of significantly oversized relief 
devices for given overpressure scenarios. The problem is amplified when larger relief devices are 
installed and the downstream equipment for separation, flaring, and/or vent containment receive much 
higher flow rates than the design anticipated. Oversizing the relief devices can be costly and not 
knowing the flow rate accurately can be detrimental to the performance of downstream safety systems. 
 
On the other hand, proper accounting of non-equilibrium flow phenomena offers a potential 
opportunity to save capital investments during pressure relief device revalidation projects. “Capacity 
creep” and debottlenecking projects in refineries and chemical plants can increase the required 
overpressure relief flow rate. It is not uncommon for the increased required flow rate to exceed the 
calculated capacity of installed pressure relief devices when equilibrium flow is assumed. It is 
foreseeable that accounting for the increased flow due to non-equilibrium effects can address seeming 
capacity deficiencies that would otherwise require modifications in the field (e.g., installing larger 
pressure relief devices). 
 
4. Background 
The fundamental equation for the determination of mass flux through a relief valve nozzle is the 
differential form of the steady-state, constant elevation and frictionless Bernoulli equation 
 

𝑢𝑑𝑢 = −𝑣𝑑𝑃 = −
ௗ௉

ఘ
      (4.1) 

 
Note: Variables are defined in the Nomenclature section. Integration from the stagnation state 
(𝑃 = 𝑃଴, 𝑢 = 0) to the nozzle throat (e.g., exit) pressure and expressing the result in terms of the mass 
flux yields  
 

𝐺 = 𝜌௧ ቂ−2 ∫
ௗ௉

ఘ

௉೟

௉బ
ቃ

ଵ/ଶ
      (4.2) 

 
Note this equation makes no provision for the geometry of the nozzle. This result becomes the 
Homogeneous Equilibrium Model (HEM) for nozzles when the flow is vapor-liquid two-phase flow and 
the following are assumed: 

 The pressures in both phases are equal 
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 The temperatures in both phases are equal (thermal equilibrium) 
 The velocities of both phases are equal (mechanical equilibrium) 
 The Gibbs free energies (chemical potentials) of both phases are equal (chemical equilibrium) 
 Homogeneity (the fluid is modeled as a single phase with thermodynamic properties that are 

the average of the two phases) 
 
It has long been known that the HEM under-predicts the mass flux for nozzle flow with inlet conditions 
near the fluid saturation conditions.  Early literature reviews presented by Saha (1978) and by Hsu 
(1972) indicate the HEM under-predicts critical discharge rates for short pipes and near saturation or 
subcooled upstream conditions due to the liquid superheat.  An example from Hutcherson (1975) for 
flow with inlet qualities near zero is illustrated in Figure 4.1. The comparison shows that, as the inlet 
quality approaches zero, the error in the predicted critical mass flux increases. 

 
Figure 4.1, Comparison of HEM with Experimental Data from Hutcherson (1975, Figure 107) 
 
When a subcooled or saturated liquid flow is analyzed using the HEM, pressure reduction along an 
isentropic flow path is nearly isothermal for small degrees of subcooling. However, the temperature 
increases slightly if the initial subcooling is achieved by increasing the pressure at constant entropy. 
Thus, as the initial pressure increases, depressurization along an isentropic flow path can result in some 
amount of temperature reduction with the amount of temperature reduction increasing as the initial 
pressure increases. In either case, the critical mass flux from application of Equation 4.2 with the 
equilibrium assumptions often occurs when the nozzle throat pressure is near the fluid saturation 
pressure. Isothermal depressurization from point A to point B located at the fluid saturation pressure is 
illustrated in Figure 4.2. The square at the top of the two-phase region represents the critical point. 
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Figure 4.2, Flashing Commences near the Saturation Curve 
 
When the fluid remains a saturated liquid for the majority of the flow path and the nozzle throat 
pressure is approximately equal to the fluid saturation pressure, a close estimate of the HEM flux can be 
obtained using the Bernoulli equation with the throat pressure equal to the saturation pressure.   
 

𝐺 = ඥ2𝜌଴(𝑃଴ − 𝑃௦)      (4.3) 
 
See for example Leung and Ciolek (1994) who state that the use of the saturation pressure in the 
Bernoulli equation is appropriate due to choking at the throat for longer flow lengths (L/D=25, 50 and 
100) when the HEM assumptions are appropriate. When frictional effects are included with constant 
elevation and thermodynamic equilibrium, the integrated Bernoulli equation becomes 
 

𝐺 = ඨ
ଶఘబ(௉బି௉ೞ)

ଵା௙ವ
೗

೏

      (4.4) 

 
In contrast, when non-equilibrium effects are important, the Bernoulli equation approximation to the 
HEM (Equations 4.3 or 4.4) under-predicts the critical mass flux for slightly subcooled and saturated 
liquid inlet conditions. The critical mass fluxes calculated using Equation 4.4 are compared with 
measured mass flux data for saturated and subcooled water flow from Sozzi and Sutherland (1975) in 
Figure 4.3. Inspection of Figure 4.3 reveals that the error in the calculated mass flux increases as the 
fluid subcooling decreases and as the nozzle length decreases. This deviation has been attributed to 
non-equilibrium effects. Note: inclusion of frictional effects is important for longer nozzles. The 
calculated mass flux is higher than the measured mass flux for longer nozzles and large subcooling when 
friction is ignored.  
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Figure 4.3, Comparison of Bernoulli Equation Calculated Flow with Sozzi and Sutherland (1975) Data 
 
Various approaches have been proposed to more accurately predict the critical nozzle flow of saturated 
and subcooled liquids.  Only four previous models are mentioned herein. For a more thorough summary, 
the reader is referred to Yoon et al. (2006).   
 
4.1 Burnell Correction Factor 
A method proposed by Burnell (1947) includes a correction factor, the Burnell C factor, in the Bernoulli 
equation. 
 

𝐺 = ඥ2𝜌଴[𝑃଴ − (1 − 𝐶)𝑃௦]     (4.1.1) 
 
To account for friction, the fDl/d term can be retained. 
 

𝐺 = ඨ
ଶఘబ[௉బି(ଵି஼)௉ೞ]

ଵା௙ವ
೗

೏

      (4.1.2) 

 
Examples from the literature for correlations of the Burnell C factor include Weisman and Tentner 
(1978), Sallet and Sommers (1985), and Kim (2015a). Weisman and Tentner (1978) show a correlation 
with the nozzle inlet saturation pressure for water flow (Figure 4.4).  Sallet and Sommers (1985) 
reported a correlation with nozzle inlet stagnation temperature developed by Burnell (1947) for water 
flow. 
 

𝐶 = 0.264 ቂ
଻ହ.ସ଼ି଴.ଵସ்

ସଽ.ଶ
ቃ where 𝑇[=]°𝐶     (4.1.3) 

 
Sallet and Sommers (1985) also reported that Equation 4.1.3 was derived using a surface tension versus 
temperature correlation.  
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Figure 4.4, Weisman and Tentner (1978) Correlation for Burnell C Factor 
 
4.2 Henry-Fauske Non-equilibrium Factor 
As previously stated, deviation of the HEM from data for saturated and subcooled liquid flow has been 
attributed to non-equilibrium effects.  Perhaps the first treatment of non-equilibrium effects in nozzle 
flow can be attributed to Henry and Fauske (1971). Henry and Fauske posited a “non-equilibrium” factor 
N such that the actual fluid quality (x) at the nozzle throat can be related to the equilibrium quality (xE) 
at the nozzle throat.  
 

ቀ
ௗ௫

ௗ௉
ቁቚ

௧
= 𝑁 ቀ

ௗ௫ಶ

ௗ௉
ቁቚ

௧
      (4.2.1) 

 
Equation 4.2.1 was developed using the no-slip condition at the nozzle throat and the presumption that 
(dN/dP)│t is negligible for constant area ducts and nozzles.  The non-equilibrium factor was formulated 
as 
 

𝑁 = ቊ

௫೐

଴.ଵସ
 𝑓𝑜𝑟 𝑥ா < 0.14

1 𝑓𝑜𝑟 𝑥ா ≥ 0.14
     (4.2.2) 

 
Sudi et al. (1994) pointed out that Jones & Saha (1977) and Jones (1980, 1982) showed Henry & Fauske's 
model could not explain the relaxation process in which superheated liquid proceeds toward a saturated 
state via vaporization.  They suggest that Equation 4.2.1 is contrary to results obtained from basic mass 
conservation and that the real relaxation phenomena are governed by interfacial processes independent 
of the equilibrium path driving the phase change. 
 
4.3 Leung Extension of Henry-Fauske Method 
Leung (2019) extended the method of Henry and Fauske using his ω-method to calculate the equilibrium 
quality and then adjusting the equilibrium quality with a Henry-Fauske type non-equilibrium factor.  
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Leung developed correlations for the non-equilibrium factor for several data sets.  His observations 
include: 
 

 Thermal equilibrium is closely approached for inlet quality greater than 0.1 (xo > 0.1)  
 Thermal non-equilibrium does not play a significant role at high inlet sub-cooling (Bernoulli flow) 
 The largest thermal non-equilibrium occurs at the saturated inlet condition (xo = 0) due to the 

bubble nucleation process 
 Pressure-undershoot occurs, i.e. pressure dropping below the saturation pressure, at flashing 

inception 
Leung’s contribution was application of the ω-method to estimate the Henry-Fauske non-equilibrium 
factor.  
  
4.4 Delayed Equilibrium Model 
Another approach to modeling non-equilibrium flow is the Delayed Equilibrium Model (DEM) as 
described by Bartosiewicz et al. (2011) and De Lorenzo et al. (2017). The presence of three phases is 
assumed in the DEM: saturated vapor, saturated liquid and a metastable liquid. In the DEM, the fluid 
pressure decreases to the saturation pressure (Ps) due to acceleration and friction but flashing does not 
commence until a lower onset pressure (Po). Between the saturation pressure and the flashing onset 
pressure, the fluid is referred to as metastable fluid. Bartosiewicz et al. (2011) report observations by 
Lackmé (1979) that the onset pressure is 0.95 – 0.98 times the saturation pressure and used a factor of 
0.95. Reducing the flashing onset pressure has the effect of shifting the onset of nucleation to a pressure 
less than the saturation pressure. The metastable fluid phase does not disappear instantaneously after 
the flashing onset pressure is reached, but rather is converted to an equilibrium phase based on an 
empirical relaxation law. The resulting fluid quality depends on the rate of relaxation of the metastable 
fluid to the equilibrium fluid.  Bartosiewicz et al. (2011) report their approach is similar to the 
Homogeneous Relaxation Model (HRM) of Bilicki (1990). 
 
4.5 Summary 
To summarize, the flow of saturated and slightly subcooled liquids in nozzles is characterized by a rapid 
pressure decrease to a non-equilibrium superheated state. The superheated liquid is referred to as a 
metastable fluid.  Upon depressurization, flashing does not typically commence until the fluid pressure 
falls below the fluid saturation pressure. The amount of pressure-undershoot (or equivalently, the 
amount of fluid superheating) is determined by non-equilibrium phenomena. The commonality of the 
various methods (Burnell, Henry and Fauske, Leung, DEM) is that upon depressurization a metastable 
fluid is produced. The Burnell method can be thought of as representing single-phase metastable fluid 
flow into the two-phase envelope until rapid vaporization occurs at the nozzle throat. The Henry–Fauske 
and Leung methods can be viewed as reducing the quality for a given throat pressure. The empirical 
non-equilibrium factor (N) is determined such that the mass flux is calculated with acceptable accuracy. 
The DEM combines both boiling delay (until the flashing onset pressure) and a reduced quality at the 
nozzle throat based on a relaxation model. The thermodynamic path of depressurization into the two-
phase region is illustrated in Figure 4.5. As the pressure is reduced from Point A to Point B a metastable 
fluid is formed when the fluid pressure decreases below the saturation pressure. Vaporization 
commences and choking occurs at Point B rather than at the saturation pressure. The square at the top 
of the two-phase envelope represents the critical point.  
 



8 
 

 
Figure 4.5, Flashing Commences inside the Two-Phase Envelope  
 
5. Non-equilibrium Flow Model Description 
A premise of the proposed calculation method is that when saturated and slightly subcooled liquids flow 
through converging nozzles, the observed non-equilibrium effects are a manifestation of the rapid 
depressurization upon acceleration of the fluid in the nozzle converging section. It has been 
demonstrated in bubble nucleation literature, see for example Alamgir and Lienhard (1981), that the 
amount of pressure-undershoot (e.g., superheating) depends on the rate of depressurization. The 
difference between the fluid saturation pressure and the bubble nucleation pressure increases as the 
depressurization rate increases. In nozzle flow the rate of depressurization is related to the rate of fluid 
acceleration and thus also to the geometry of the converging flow area. In other words, the amount of 
thermal non-equilibrium is determined by the nozzle geometry and rate of acceleration pressure 
decrease. When rapid vaporization occurs at the nozzle throat, the nozzle throat pressure can be 
represented by the bubble nucleation pressure. Further, it will be shown that Burnell’s C factor can be 
correlated with the rate of depressurization due to acceleration into the nozzle.  
 
 

 
 
Figure 5.1, Generic Converging Nozzle 
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The proposition is illustrated using a generic converging nozzle (Figure 5.1) and described as follows.  
Note the same principles also apply to square-edged inlets if the vena contracta is properly accounted for 
as discussed in the Prisco data analysis below. The fluid is accelerated in the converging section of the 
nozzle due to the pressure driving force. The rate of this acceleration pressure loss determines the 
amount of superheating, e.g., the undershoot pressure, as determined by the bubble nucleation 
pressure. For a given overall pressure drop, as the friction loss in the straight section of the nozzle 
increases, the amount of pressure drop available for acceleration loss in the converging section 
decreases, i.e., increasing the length of the straight section of the nozzle downstream of the converging 
section decreases the acceleration losses in the converging section. Thus, the departure from equilibrium 
in the converging section decreases as the friction loss in the straight section increases. This 
interpretation is consistent with the rule of thumb that equilibrium flow occurs when the nozzle length 
is greater than 100 mm (4 inches); namely, the length provides enough friction loss (e.g., back pressure) 
to cause the bubble nucleation pressure to approach the fluid vapor pressure in the converging section. 
Furthermore, for a range of nozzle lengths, the friction losses of the metastable fluid in the straight 
section of the nozzle can be represented by the single-phase Darcy–Weisbach equation (Equation 5.1) 
and choking occurs due to rapid vaporization essentially at the nozzle throat. The Darcy-Weisbach 
equation can be used to compute pressure drop for laminar or turbulent flow using an empirical friction 
factor (Benedict, 1980). 
 

∆𝑃 = 𝑓஽
௟

ௗ

ఘ௨మ

ଶ௚೎
      (5.1) 

 
This interpretation is consistent with observations that flashing primarily occurs near the location of 
minimum pressure (Shin and Jones, 1993), e.g., the nozzle throat.  
 
The characteristics of fluid flow in a nozzle as depicted by Fauske (1962) are illustrated in Figure 5.2. In 
Figure 5.2, the nozzle length is represented by the vertical line. Pressure “upstream” of the nozzle exit is 
represented by the curves to the left of the vertical line. Pressure downstream of the nozzle exit is to the 
right of the vertical line. In this view of nozzle flow, the pressure drop is linear with axial distance for a 
large portion of the nozzle.  Line III corresponds to a typical pressure profile in which critical flow 
conditions do not exist. For the flow of saturated and subcooled liquids through a nozzle, this pressure 
profile can be represented by the Bernoulli equation for single-phase flow. Line I represents critical flow 
with a finite critical pressure profile. Fauske (1962) cites data indicating the slope of the pressure profile 
for constant mass flux and quality, i.e., (dP/dz)│G,x , is finite.   
 

 
Figure 5.2, Characteristics of Critical Flow (from Fauske, 1962, Figure 18) 
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Line II represents the mathematical treatment of critical flow in which dP/dz at the throat is infinite. In 
this mathematical representation of saturated or subcooled flow, the pressure profile is linear for 
essentially the entire nozzle length. Choking is indicated when then the calculated slope rapidly 
approaches negative infinity a short distance from the outlet. This pressure profile would be typical of 
the HEM, for example. In this view of critical flow, “rapid vaporization” occurring at the nozzle throat is 
responsible for choking the flow.   
 
The Bernoulli equation with the throat pressure equal to the vapor pressure (Equation 4.4) can be used 
to estimate the mass flux when single-phase flow occurs over most of the nozzle length and equilibrium 
flashing approximately coincident with choking occurs essentially only at the nozzle throat. This view of 
choking is commonly accepted for equilibrium flow of subcooled and saturated fluids. It will 
subsequently be shown that, by application of bubble nucleation dynamics to estimate the nozzle throat 
pressure, the Bernoulli equation with the throat pressure equal to the bubble nucleation pressure can 
be used to estimate the mass flux when single-phase flow occurs over most of the nozzle length and 
non-equilibrium flashing approximately coincident with choking occurs essentially only at the nozzle 
throat. The difference between the flow of equilibrium fluids and metastable fluids in nozzles is that 
equilibrium fluids flash at the thermodynamic vapor pressure while metastable fluids flash at a pressure 
lower than the thermodynamic vapor pressure.  Of course, the first step is formation of the metastable 
fluid.   
 
6. Overview of Bubble Nucleation and Growth 
Vapor bubbles can only form if sufficient energy is available to overcome the cohesive forces of the 
liquid and create a void space for the vapor. Bubbles with sufficient energy to attain a critical size can 
survive and grow to larger sizes while bubbles with insufficient size collapse. Nucleation is the formation 
of the critically sized or larger bubbles. The radius of a spherical bubble of this sufficient size is known as 
the critical radius.  
 
Figure 6.1 illustrates the three phases of bubble growth in superheated liquids.  Bubble nucleation 
commences after a finite delay time. Upon nucleation, the bubble radius is just larger than the critical 
radius. Initially surface tension impedes bubble growth. After the bubble grows somewhat (Miyatake et 
al. (1997) suggest doubling the diameter), inertia forces dominate and the bubble growth is primarily 
due to the difference in the pressure of the vapor inside the bubble and the fluid pressure exterior to 
the bubble. The pressure of the vapor inside the bubble is related to the local fluid thermodynamic 
vapor pressure by the Poynting correction factor. During this phase the bubble growth is approximately 
linear with respect to time.  As the bubble grows further, its temperature drops causing a temperature 
difference between the surrounding fluid and bubble interior. In this phase the bubble growth rate is 
dominated by heat transfer from the surrounding liquid, which causes the addition of vapor to the 
bubble by evaporation at the vapor-liquid interface.  During this phase the bubble growth is 
approximately proportional to the square root of time.  
 
Common assumptions in equilibrium models of two-phase flow cannot account for bubble dynamics 
when the bubble nucleation delay time is significant compared to the fluid residence time in the nozzle 
and when significant pressure and temperature differences exist between the liquid and vapor phases. 
According to Yoon et al. (2006), thermal non-equilibrium has been shown to be related to bubble 
nucleation because several researchers used a nucleation delay time on the order of 1 ms in 
homogeneous non-equilibrium models to predict experimental results. Bubble nucleation delay is 
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consistent with experimental results and provides an explanation for rapid phase transition phenomena. 
The challenge is to relate bubble nucleation phenomena to nozzle flow phenomena.   
 

 
Figure 6.1, Bubble Growth Development  
 
7. Metastable Fluid Formation and Bubble Nucleation in Nozzle Flow 
The importance of non-equilibrium effects in nozzle flow has long been recognized. According to Angelo 
et al. (2012), the idea of a metastable fluid is not new; rather it was introduced by Silver and Mitchell 
(1951). Because the degree of superheat is directly related to the amount of pressure decrease below 
the saturation pressure, these concepts can be used interchangeably to describe deviation from 
equilibrium upon pressure reduction.  
 
In classical homogeneous bubble nucleation theory (Brennen,1995), the net work required to form a 
bubble having the critical size is  
 

𝑊௖௥ =
ଵ଺గఙయ

ଷ(୼௉)మ      (7.1) 

 
In this expression ∆P is the difference between the equilibrium pressure inside the bubble and the 
pressure of the liquid surrounding the bubble.  
 
The relationship between the net work to form a bubble and the typical kinetic energy of the molecules, 
e.g., kT, is typically given in terms of the Gibbs number 
 

𝐺𝑏 =  𝑊௖௥/𝑘𝑇      (7.2) 
 
Combining Equations 7.1 and 7.2 to eliminate the work term results in  
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𝐺𝑏 =
ଵ଺గఙయ

ଷ௞்(୼௉)మ      (7.3) 

 
In addition to homogeneous nucleation in the bulk liquid, heterogeneous nucleation also occurs on the 
surfaces of the flow channel and on minute particles or bubbles. It is recognized that heterogeneous 
nucleation occurs in nozzle flow and, at least in the beginning, is the dominant source of bubble 
formation (Riznic et al., 1987). A bubble nucleation heterogeneity factor, , is typically included in 
Equation 7.3 to account for heterogeneous nucleation. 
 

ீ௕

ఝ
=

ଵ଺గఙయ

ଷ௞்(୼௉)మ      (7.4) 

 
The challenge in applying Equation 7.4 to nozzle flow is determination of the heterogeneity factor. 
 
The pressure difference in Equation 7.1 can be related to the vapor pressure of the fluid at the liquid 
temperature using the Poynting correction factor.  Application of the Poynting correction factor is given 
by the following approximate expression (Blander and Katz, 1975). 
 

∆𝑃 = [𝑃௦(𝑇௜) − 𝑃௡] ൬1 −
௩೑

௩೒
൰    (7.5) 

 
Credit has been given to Alamgir and Lienhard (1981) for first examining pressure-undershoot. They 
developed a semi-empirical correlation, motivated by classical nucleation theory, to predict the 
pressure-undershoot below the saturation pressure at the onset of flashing during the rapid 
depressurization of hot water. Alamgir and Lienhard used Gb=28.2 and developed the depressurization 
rate, Σ’, dependent heterogeneity factor correlation given by Equation 7.6. The resulting pressure-
undershoot correlation is given by Equation 7.7.  
 

𝜑 = 0.1058𝑇௥
ଶ଼.ସ଺[1 + 14(Σᇱ)଴.଼]    (7.6) 

 
Equation 7.7 is derived by substitution of Equations 7.6 and 7.5 into Equation 7.4 and setting Gb=28.2. 
For convenience, this equation will be referred to as the “Alamgir and Lienhard (A-L) correlation”. 
 

𝑃௦(𝑇௜) − 𝑃௡ = 0.252
ఙయ/మ

ೝ்
భయ.ళయቂଵାଵସ൫ஊᇲ൯

బ.ఴ
ቃ

భ/మ

ඥ௞ ೎்൬ଵି
ೡ೑

ೡ೒
൰

     (7.7) 

 
Note: Lienhard et al. (1986) provided a review of equations of state and the prediction of spinodal lines 
and incorrectly showed the quantity (1-vf/vg) under the square root sign (their Equation 28). The term 
should be outside the square root sign as shown in Equation 7.7. This correction is consistent with the 
original Alamgir and Lienhard (1981) correlation (their Equation 13) and with Equations 7.8 and 7.12. 
Also note the precise value of the constant in front of Equation 7.7 is 0.2507 rather than 0.252. When 
reference is made to the Alamgir and Lienhard correlation their value of 0.252 is retained.  
 
The Alamgir and Lienhard correlation is dimensional, with depressurization rate units of Matm/s (Mega-
atm/s). Surface tension, Boltzmann constant, temperature and pressure units are self-consistent. The 
correlation was developed for  
 

0.62 ≤ 𝑇௥ ≤ 0.935 𝑎𝑛𝑑 0.004 ≤ Σᇱ ≤ 1.8 𝑀𝑎𝑡𝑚 𝑠⁄ (405 ≤ Σᇱ ≤ 182,000 𝑀𝑃𝑎 𝑠⁄ ) 
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The model cannot be used to accurately predict the nucleation pressure for smaller depressurization 
rates without changing the correlation constants.  The heterogeneity factor given in Equation 7.6 was 
developed for water. It will be demonstrated later that it can also be used for other chemicals, including 
mixtures, with proper scaling of the Gibbs number. 
 
Abuaf et al. (1983) stated that “according to accepted concepts” for nozzle flow with subcooled inlet 
conditions, the liquid accelerates in the converging section causing the local pressure to drop below the 
saturation pressure. The resulting metastable superheated fluid flow is essentially a single phase until it 
reaches the flashing inception point. Abuaf et al. utilized the correlation developed by Alamgir and 
Lienhard combined with a correlation for turbulence intensity to demonstrate the flashing inception 
point is essentially located at the plane of minimum cross-sectional area in converging-diverging nozzles.  
 
Abuaf et al. defined a static flashing pressure-undershoot and a dynamic pressure-undershoot. They 
estimated the static flashing pressure-undershoot value using a slightly modified version of the Alamgir 
and Lienhard correlation, Equation 7.8. (Note: The nomenclature of Abuaf et al. is retained in Equation 
7.8. The static flashing pressure in Equation 7.8 is equivalent to the nucleation pressure in Equation 7.7.) 
 

Δ𝑃ி௜௢ = 𝑃௦ − 𝑃ி௜ = 0.253
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    (7.8) 

 
A dimensionless pressure-undershoot at flashing inception was defined to relate the static flashing 
pressure-undershoot (ΔPFio) to the dynamic pressure-undershoot (ΔPFi)   
 

Δ𝑃ி௜
∗ =

୼௉ಷ೔

୼௉ಷ೔೚
      (7.9) 

 
The dimensionless pressure-undershoot was defined as a function of the turbulence intensity and for 
converging flows as a function of the area ratio. The turbulence effects were then shown to be small for 
the converging flow data set examined and were subsequently neglected, namely Δ𝑃ி௜

∗ ~1 with the 
static pressure-undershoot approximately equal to the dynamic pressure-undershoot. With flashing 
inception at the nozzle throat, single-phase flow can be considered upstream of the throat. For liquids 
with constant density, the critical mass flux was then given by 
 

𝐺௖ = 𝐶஽ඥ2𝜌(𝑃଴ − 𝑃௦ + Δ𝑃ி௜)     (7.10) 
 
The depressurization rate for nozzles was given as 
 

Σᇱ =
ீ೎

య

ఘమ

ௗ(௟௡஺)

ௗ௭
+ Σ′଴      (7.11) 

 
In this expression for the depressurization rate, frictional loss has been neglected and Σ′଴ is a transient 
component equal to zero for steady flows. Where discharge pressure measurements were available, a 
discharge coefficient (CD) of 0.94 was found to fit the data within 4%. For the data of Powell (1961), the 
throat pressure was not given, but Abuaf et al. were able to fit the flow data within 5% by using a 
discharge coefficient of 0.90.   
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Levy & Abdollahian (1982) used a slight modification to the Alamgir and Lienhard correlation based on 
the data of Reocreux (1974). Their final expression for the critical flow rate was virtually identical to 
those proposed by both Alamgir and Lienhard (1981) and Abuaf et al. (1983).  
 

Δ𝑃ௗ = 0.258
ఙయ/మ
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ೝ்
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    (7.12) 

 
In the Levy and Abdollahian model, the flashing inception occurs when the liquid pressure reaches an 
amount ∆Pd below the saturation pressure corresponding to the liquid temperature. Levy and 
Abdollahian used an average decompression rate over the length of the nozzle. 
 

Σത =
ଵ

ସ
(𝐺௧ + 𝐺௘) ൤ቀ

ீ

ఘ
ቁ

௧

ଶ
− ቀ

ீ

ఘ
ቁ

௘

ଶ
൨ /Δ𝑧    (7.13) 

 
The subscripts “t” and “e” correspond to throat and entrance, respectively, and ∆z is the nozzle length.  
A critical assumption by Levy and Abdollahian (1982) is that a constant amount of superheat is 
maintained as the pressure decreases along the flow path through the nozzle, i.e., it did not account for 
any relaxation phenomena. They claimed the assumption of maintaining the liquid in non-equilibrium 
conditions is supported by the substantial relaxation times that could be inferred from the Marviken 
full-scale critical flow test data (Marviken, 1982). They also concluded their model results agree with the 
data when the nozzle contraction zone is followed by a short constant-area section.  
 
The methods described for water by Alamgir and Lienhard (1981), Abuaf et al. (1983) and Levy and 
Abdollahian (1982) form the basis for the method described in this paper. The proposed method uses 
the Alamgir and Lienhard (1981) heterogeneity factor (Equation 7.6) to estimate the nozzle throat 
pressure. Contributions to the art include application of the depressurization rate equation (Equation 
7.11) to both a converging nozzle and a sudden contraction at the point in the nozzle where the 
maximum depressurization rate occurs. The method applies to a sudden contraction by accounting for 
the depressurization rate in the vena contracta. Thus the method provides a relationship between 
nozzle geometry and the amount of pressure-undershoot. Finally, it is recognized that the nucleation 
pressure estimated using Equation 7.7 represents the minimum nozzle throat pressure when rapid 
vaporization occurs at the nozzle throat. Sufficient pressure driving force must be available for the 
depressurization due to acceleration to achieve the minimum nozzle throat pressure. If sufficient 
pressure driving force is not available, then the potential pressure-undershoot given by Equation 7.7 is 
not fully realized and an “approach to equilibrium” factor is utilized. The method is called herein the 
“bubble nucleation method”. 
 
8. Relaxation Time 
The conceptual model proposed for initially subcooled and saturated liquid flow through a converging 
nozzle is described by single-phase flow over the length of the nozzle with flashing, and choking, 
occurring at the nozzle throat. Application of the proposed model should be limited to situations where 
superheated fluid (i.e., metastable fluid) flow occurs over essentially the entire length of the nozzle and 
flashing occurs at the nozzle throat. Shin and Jones (1993) pointed out that treating the flashing 
inception as a single point has been previously justified since in many cases, such as converging-
diverging nozzles, flashing occurs in a zone that is quite narrow. However, in other cases, such as 
constant-area flows with friction-dominated pressure profiles, the flashing may continue over a wider 
range of the nozzle length. This effect makes it important to determine both the size and number of 
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bubbles locally so that accurate estimation of the development of void fraction may be undertaken. In 
this regard, it is important to determine the relaxation time phenomena. 
 
Moody (1975) and Fauske (1985) indicated for subcooled and saturated inlet conditions, flashing water-
steam flow approaches equilibrium conditions for flow lengths larger than about 100 mm (4 inches). Kim 
(2015b) indicated the criterion could be 127 mm (5 inches) for sub-cooled and two-phase water, but 
should be changed to 305 mm (12 inches) for saturated water. Kim (2015b) also suggested an L/D ratio 
of 25 as a criterion for the transition from non-equilibrium choking to equilibrium choking for nozzle and 
pipe flashing water-steam flows. In contrast, Nilpueng and Wongwises (2009) studied the flow of HFC-
134a through short tube orifices and observed metastable liquid flow at the tube central core 
surrounded by two-phase bubble flow followed by two-phase bubble flow after the metastable core 
disappeared. The length of the metastable core increased with the amount of subcooling but had 
disappeared before the end of the 15 mm (0.6 inch) long tubes used in their studies. 
 
Downar-Zapolski et al. (1996) defined the relaxation time, ϴ, in terms of quality for use in the 
Homogeneous Relaxation Model (HRM). 
 

஽௫

஽௧
=

డ௫

డ௧
+ 𝑢

డ௫

డ௭
= −

௫ି௫̅

ఏ
      (8.1) 

 
Locally, in a Lagrangian description of the flow, the relaxation equation exhibits an exponential approach 
to equilibrium from an initial state x0. 
 

𝑥 = 𝑥ா − (𝑥ா − 𝑥଴)𝑒𝑥𝑝 ቀ
ି௧

ఏ
ቁ     (8.2) 

 
Correlation of the “Moby Dick” data (Reocreux, 1974) resulted in a correlation for pressures up to 10 
bar(a) of the form  
 

𝜃 = 6.5𝑥10ିସ𝜖ି଴.ଶହ଻𝜓ିଶ.ଶସ     (8.3) 
 
For pressures above 10 bar(a) the correlation took the form  
 

𝜃 = 3.84𝑥10ି଻𝜖ି଴.ହସ𝜑ିଵ.଻଺     (8.4) 
 
In these correlations the non-dimensional pressure differences are defined as 
 

𝜓 =
௉ೞ(்೔೙)ି௉

௉ೞ(்೔೙)
      (8.5) 

 

𝜑 =
௉ೞ(்೔೙)ି௉

௉೎ି௉ೞ(்೔೙)
      (8.6) 

 
Downer-Zapolski et al. (1996) indicated that for θ=1 second, the predictions of the HRM are equivalent 
to the Homogeneous Frozen Model (HFM) and for θ=0.001 second (1 ms), the HRM predictions are 
equivalent to the Homogeneous Equilibrium Model (HEM).  An implication for subcooled and saturated 
liquid flow in nozzles is that relaxation time, not length or length/diameter ratio, should be the criterion 
for approach to equilibrium. 
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Sudi et al. (1994) studied the relaxation time of water in a 4.95 mm (0.19 inch) inside diameter by 1,055 
mm (41.5 inches) long stainless steel tube. They defined the relaxation time as the time between the 
saturation inception point and the relaxation inception point. Effectively the saturation inception point 
is when the fluid reaches its bubble point pressure at the inlet temperature. The relaxation inception 
point was determined in their experiments by noting when the liquid temperature starts to decrease 
along with the liquid pressure.  Their data showed required relaxation lengths between 350 and 450 mm 
(14 and 18 inches) and corresponding relaxation times between about 55 and 85 ms.  
 
For short nozzles or long relaxation times, it is expected that the flow over the majority of the nozzle 
length can be considered “frozen flow”, where no vaporization occurs. However, for subcooled or 
saturated liquid flows that have experienced rapid pressure loss, the “frozen flow” regime is 
characterized by the formation of a metastable fluid phase. Unfortunately, the physical properties of 
metastable fluids are not generally known and thus the saturated liquid properties are used in the 
Downer-Zapolski et al. (1996) correlation. 
 
9. Explosive Vaporization 
For single-phase flow, it is accepted that a pressure discontinuity occurs at the nozzle throat when the 
flow is choked. For short nozzles with subcooled or saturated liquid feed, a similar rapid 
depressurization and pressure discontinuity has been observed near the nozzle throat. The extreme 
pressure gradient at the nozzle outlet, see for example line II in Figure 5.2, is characterized by rapid 
vaporization at the nozzle outlet when the metastable fluid pressure decreases to below the flashing 
inception pressure. For these cases, flashing inception occurs essentially at the nozzle throat. Simões-
Moriera and Shepard (1999), Vieira and Simões-Moriera (2007), and Angelo et al. (2012) suggest the 
sonic flow state can be determined using the Chapman-Jouget (C-J) condition with a Rankine–Hugoniot 
jump condition. Application of the C-J condition is outside the scope of this paper but the concept of 
rapid vaporization coincident with choking at the nozzle throat is incorporated in the model 
assumptions.  
 
10. Thermodynamic Considerations 
The amount of superheating upon rapid depressurization of a subcooled or saturated liquid is 
constrained by the fluid thermodynamic properties. A depressurization diagram is illustrated in Figure 
10.1 for water. The upper (or leftmost) curve represents the water saturation pressure and the lower (or 
rightmost) curve represents the liquid thermodynamic stability limit, called the spinodal curve. The 
curves in between represent the expected pressure-undershoot below the saturation pressure using the 
Alamgir and Lienhard correlation (Equation 7.7).  A thermodynamic path for near isothermal rapid 
depressurization, such as experienced during isentropic expansion of a subcooled liquid, is illustrated 
starting at point A and ending at point B. For small depressurization rates, the amount of pressure-
undershoot before nucleation occurs is small and flashing occurs near the saturation pressure. As the 
depressurization rate increases, the amount of pressure-undershoot also increases and flashing occurs 
at pressures further below the saturation pressure. At an extremely high depressurization rate, the 
amount of pressure-undershoot is limited by the spinodal pressure. Note that as the nozzle inlet 
temperature (point A) approach the thermodynamic critical temperature, the spinodal curve 
approaches the vapor pressure curve and thus decreases the maximum amount of pressure-undershoot.  
These observations are important for non-equilibrium liquid flow because, for a fixed inlet pressure, as 
the undershoot pressure decreases, the pressure differential to drive the flow increases and thus the 
flow rate also increases. This phenomenon is important for the design and evaluation of pressure relief 
devices and associated downstream equipment.  
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Figure 10.1, Water Depressurization Diagram 
 
Given an undershoot pressure equal to the nozzle throat pressure, Equation 10.1 is used to calculate a 
Burnell C factor for use in Equations 4.1.1 or 4.1.2. 
 

𝐶 = 1 −
௉ೠ

௉ೞ
       (10.1) 

 
Figure 10.2 illustrates the Burnell C factor diagram for saturated water developed from the Alamgir and 
Lienhard correlation (Equation 7.7) and Equation 10.1. Comparison of Figure 10.2 with the Weisman and 
Tentner (1978) correlation (Figure 4.4) shows the Weisman and Tenter correlation fits between the 
curves for 1,000 and 10,000 MPa/s (0.01 and 0.1 Matm/s).  
 
It is very important to distinguish between the undershoot pressure as estimated from the Alamgir and 
Lienhard correlation and the flashing pressure at the nozzle throat as is discussed later in the analysis of 
the Sozzi and Sutherland (1975) data. The pressure-undershoot value estimated using the Alamgir and 
Lienhard correlation represents the maximum possible departure from equilibrium. The minimum 
possible departure from equilibrium is of course zero, i.e., flashing at the fluid vapor pressure. The 
pressure at which flashing occurs at the nozzle throat is between these two extremes and is determined 
by the fluid initial conditions and the nozzle geometry. Before the data analysis though, scaling to 
develop depressurization diagrams for chemicals other than water is discussed. 
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Figure 10.2a, Burnell C – Pressure Diagram 

 
Figure 10.2b, Burnell C – Reduced Temperature 
Diagram 

Figure 10.2, Water Burnell C Factor Diagrams 
 
The nucleation rate is expressed (Brennen, 1995, Equation 1.8) in the general form  
 

𝐽 = 𝐽଴exp (−𝐺𝑏)     (10.2) 
 
As previously mentioned, Alamgir and Lienhard (1981) used a Gb=28.2 for water and pointed out this 
value represents “real”, not homogeneous” nucleation. Water is known to exhibit nucleation rates 
higher than those for other chemicals, such as hydrocarbons and chlorofluorocarbons. For example, 
data from Avedisian (1985) indicates that at the thermodynamic stability limit at atmospheric pressure, 
the water nucleation rate is 9x1028 nuclei/cm3s while those for n-pentane, n-heptane and n-octane are 
8x1024, 8x1026, and 2x1026 nuclei/cm3s, respectively. Brennen (1995) showed that Gb=11.5 fits the limit 
of homogeneous superheat for five liquids (n-pentane, n-hexane, n-heptane, diethyl ether, and 
benzene) and pointed out the exception to the rule is water. This suggests that the Gibb’s number 
should be different for each type of species.  
 
It is also known that in general, the spinodal curve originates at the thermodynamic critical point and is 
equal to atmospheric pressure at a reduced temperature, Tr, equal to about 0.9. This suggests that 
scaling the Gibb’s number for chemicals other than water can be done at Tr=0.9.  
 

𝐺𝑏 = 𝐺𝑏௪ ቀ
ఙ
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   (10.3) 

 
Equation 10.3 is derived from equations 7.4 and 7.5, with specific volume replaced by 1/density. In 
Equation 10.3, the saturation pressures and mass densities at saturation are evaluated at Tr=0.9. The 
surface tension of both the chemical and water should be evaluated at the normal boiling point 
temperature of the chemical or the bubble point temperature of a mixture. If the normal boiling point of 
the chemical is below the freezing point of water, the surface tension ratio should be evaluated at 
298.15 K. For example, the R-11 boiling point temperature 296.92 K, the critical temperature is 471.06 K 
and the estimated Gibb’s number is 14.13.  As a result, the constant in Equation 7.7 is changed from 
0.252 to 0.354. The resulting R-11 depressurization and Burnell C factor diagrams are illustrated in 
Figures 10.3 and 10.4, respectively.  
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Figure 10.3, R-11 Depressurization Diagram 
 
 

 
Figure 10.4a, Burnell C – Pressure Diagram  

Figure 10.4b, Burnell C – Reduced Temperature 
Diagram 

Figure 10.4, R-11 Burnell C Factor Diagrams 
 
Because of the Gibbs number scaling, and the form of the Alamgir-Lienhard correlation, the Burnell C – 
Reduced Temperature Diagrams for various chemical species can be combined, as shown in Figure 10.5. 
It is notable that the Burnell C factors are approximately equal for a given reduced temperature and 
depressurization rate. 
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Figure 10.5, Combined Burnell C Diagram 
 
11. Data Analysis 
Analyses of nozzle flow data for water from Sozzi and Sutherland (1975) and for R-11 from Prisco (1975) 
are presented in this section. The described methods provide reasonable agreement with measured 
data sets. 
 
11.1 Sozzi and Sutherland (1975) Water-Steam Data 
Sozzi and Sutherland (1975) conducted a series of blowdown experiments to measure the critical flow 
rate of water through various nozzles. The experiments included subcooled, saturated and two-phase 
flow entering the nozzles. The data analysis herein is only applicable to subcooled or saturated liquid 
nozzle inlet flows.  
 
The Sozzi and Sutherland experiments were performed by discharging high pressure water from a vessel 
to atmosphere through various nozzles. The nozzles were mounted with the entrance to the nozzle flush 
with the inside wall of the blowdown vessel to minimize irreversible pressure losses of the fluid as it 
accelerated from the stagnation condition to the minimum cross-sectional area of the nozzles. Sozzi and 
Sutherland’s “nozzle 2” was chosen for this analysis (Figure 11.1.1). Note in the Sozzi and Sutherland 
terminology, the “length” of the nozzle refers to the length of the straight section downstream of the 
converging section. For example, a “zero” length nozzle does not actually have zero length; the actual 
length is the converging section length. 
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Figure 11.1.1, Sozzi and Sutherland (1975) Nozzle 2 with Length of Straight Tube 
 
It has been suggested that equilibrium flow can be assumed for nozzle lengths greater than 100 mm (4 
inches). To test this hypothesis, the throat pressures calculated using the Burnell equation (Equation 
4.1.2) were compared to the saturation pressures. In Figure 11.1.2, both the calculated throat pressures 
and the saturation pressures have been normalized relative to the inlet pressures. While it is true that 
the throat pressures approach the saturation pressures as the nozzle length increases, there is deviation 
from equilibrium for the 114.3 mm (4.5 inches) and longer nozzles. The amount of deviation depends on 
the amount of feed subcooling. Since approach to equilibrium is a time-based phenomenon, a residence 
time criterion is recommended rather than a length criterion. Note that the calculated throat pressures 
are higher than the saturation pressures for three points. It is proposed that this is due to experimental 
error but the measured nozzle throat pressures were not provided to validate this hypothesis.  
 
   

 
Figure 11.1.2, Comparison of Normalized Saturation Pressures with Normalized Throat Pressures 
Calculated using the Burnell Equation  
 
The throat pressures calculated using the Burnell equation were also compared to the bubble nucleation 
pressures as estimated by the Alamgir and Lienhard correlation (Equation 7.7). The shape of the 
converging section is required in order to calculate the depressurization rate, but it was not specified in 
the Sozzi and Sutherland article. It was, however, described as a “rounded inlet,” as depicted in Figure 
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11.1.1. For convenience, it was assumed the shape of the nozzle inlet could be represented by a sine 
function. The depressurization rate associated with steady-state acceleration of an incompressible fluid 
was then calculated as follows. The nomenclature is illustrated in Figure 11.1.3. 
 

ℎ =  ℎ଴𝑠𝑖𝑛 ቀ
గ௭

ଶ௅
ቁ       (11.1.1) 

 
𝑑௖ = 𝐷 − 2ℎ଴𝑠𝑖𝑛 ቀ

గ௭

ଶ௅
ቁ      (11.1.2) 

 

𝐴 =
గ

ସ
ቂ𝐷 − 2ℎ଴𝑠𝑖𝑛 ቀ

గ௭

ଶ௅
ቁቃ

ଶ
     (11.1.3) 
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Figure 11.1.3, Nomenclature Applied to Sozzi and Sutherland (1975) Nozzle 2  
 
The Sozzi and Sutherland nozzle 2 dimensions are D=43.2 mm, d=12.7 mm, h0=15.25 mm and L=44.5 
mm. Upon rearranging and integrating the velocity equation, Equation 11.1.4, from time = 0 to t and z = 
0 to L, the residence time in the converging section is found to be 
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The acceleration pressure drop of the yet non-flashing incompressible liquid flow in the converging 
section is calculated using the steady-state differential mechanical energy balance (Equation 4.1) 
 

−
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Upon combination with the incompressible continuity equation ( ௗ௨

௨
= −
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) and multiplication by the 

velocity, Equation 11.1.7 becomes 
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Equation 11.1.8 is equivalent to Equation 7.11 with the transient component equal to zero. From 
Equation 11.1.3, the derivative of the area is 
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The final relationship between the depressurization rate and nozzle geometry is obtained by combining 
Equations 11.1.8 and 11.1.9.  
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The depressurization rate to use in the Alamgir and Lienhard correlation, Equation 7.7, is found by 
determining the maximum depressurization rate given by Equation 11.1.10. The maximum 
depressurization rate determines the lower bound on the throat pressure. The location of the maximum 
depressurization rate is obtained by differentiating Equation 11.1.10 with respect to z and setting that 
result equal to zero to obtain Equation 11.1.11. The location of the maximum depressurization rate is 
obtained by solving Equation 11.1.11 for z. 
 

𝐷 − 2ℎ଴𝑠𝑖𝑛 ቀ
గ௭

ଶ௅
ቁ = 14ℎ଴𝑐𝑜𝑠 ቀ

గ௭

ଶ௅
ቁ 𝑐𝑜𝑡 ቀ

గ௭

ଶ௅
ቁ   (11.1.11) 

 
For the Sozzi and Sutherland nozzle 2 geometry, the location of the maximum depressurization rate is 
found to occur at z = 37.656 mm (1.471 inches). The depressurization rate at that location is found using 
Equations 11.1.10 and 11.1.12 and then used in the Alamgir and Lienhard correlation to estimate the 
pressure-undershoot.    
 

Σᇱ = ቀ−
ௗ௉

ௗ௧
ቁ

௠௔௫
     (11.1.12) 

 
An example depressurization rate calculation result is illustrated in Figure 11.1.4. The distance on the 
abscissa is from the nozzle entrance to the end of the converging section. One can see in the illustration 
the peak depressurization rate occurs over a short distance in the nozzle converging section. 
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Figure 11.1.4, Example Calculated Water Depressurization Rate for Sozzi and Sutherland (1975) Nozzle 
2 for l=0 mm (0 inches) 
 
The normalized nozzle throat pressure calculated with the Burnell equation is related to the converging 
section maximum depressurization rate in Figure 11.1.5. Deviation from a smooth curve for longer 
nozzles and smaller depressurization rates occurs because friction losses in the straight section of the 
nozzles become more important. One can also note that fluids flowing through longer nozzles 
experience larger residence times and flashing may commence before the nozzle throat. The method 
described in this article only applies when rapid flashing occurs essentially at the nozzle throat. 
 

 
Figure 11.1.5, Normalized Nozzle Throat Pressures for Sozzi and Sutherland (1975) Nozzle 2 
 
The throat pressures calculated using the Burnell equation for the various nozzle lengths were overlaid 
on the water depressurization diagram (Figure 11.1.6). One can see the general trend is as expected. 
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More detailed comparisons for l=0 mm (0 inches) and l=12.7 mm (0.5 inches) are illustrated in Figures 
11.1.7 and 11.1.8. The agreement between the bubble nucleation method and the Burnell method 
indicates acceleration losses are a major contributor to the amount of fluid superheat, i.e., 
metastability. However, for longer nozzle lengths a more detailed investigation reveals another 
phenomenon that must be considered.  
 

 
Figure 11.1.6, Sozzi and Sutherland (1975) Water Depressurization Diagram 
 

 
Figure 11.1.7, Sozzi and Sutherland (1975) Depressurization Diagram for l=0 mm (0 inches) 
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Figure 11.1.8, Sozzi and Sutherland (1975) Depressurization Diagram for l=12.7 mm (0.5 inches) 
 
Figure 11.1.9 depicts the combined effects of initial subcooling and depressurization rates on the 
resulting deviation from equilibrium at the nozzle exit. The results are illustrated for the 114.3 mm (4.5 
inches) long nozzle. The 114.3 mm nozzle length data was selected to demonstrate that non-equilibrium 
conditions can still occur at the exit of nozzles greater than 100 mm in length. For small depressurization 
rates or for large degrees of initial subcooling, the bubble nucleation pressures, and thus the nozzle 
throat pressures, approach the fluid saturation pressures; namely, the Burnell C factors approach zero. 
For large depressurization rates or for small degrees of initial subcooling, the bubble nucleation 
pressures, and thus the nozzle throat pressures, approach the bubble nucleation pressures predicted by 
the Alamgir and Lienhard correlation. The reasons for these phenomena are illustrated in Figure 11.1.9.  
 
In Figure 11.1.9a, the depressurization rate is small (ca. 2,500 MPa/s), compared to that in Figures 
11.1.9b and c (ca. 3,500 MPa/s) as indicated by the peak depressurization rate located at z = 37.656 mm. 
The amount of initial subcooling is also small as indicated by the small difference between the saturation 
pressure and the nozzle inlet pressure at the nozzle inlet (z=0). The local fluid pressure decreases due to 
acceleration as it flows through the nozzle converging section, as indicated by the solid line. The nozzle 
throat pressure approaches the Alamgir and Lienhard nucleation pressure, Pn, because the local 
pressure is smaller than the vapor pressure when the fluid has reached its maximum depressurization 
rate. Thus, in the case of shorter nozzles with larger peak depressurization rates, the nozzle throat 
pressures approach the Alamgir and Lienhard nucleation pressure.  
 
Figure 11.1.9c represents the opposite extreme of a large amount of subcooling with a large peak 
depressurization rate. For this case, because of the large degree of initial subcooling, the local pressure 
is still larger than the fluid vapor pressure at the location of maximum depressurization rate. 
Consequently, in this case, the nucleation pressure at the nozzle throat approaches the fluid vapor 
pressure.  
 
Figure 11.1.9b illustrates an intermediate case where the depressurization rate is large and the local 
pressure at the location of maximum depressurization rate is near the fluid vapor pressure. In this case 
the flashing pressure at the nozzle throat is between the two extremes. As illustrated, the Alamgir and 
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Lienhard nucleation pressure can be considered the maximum potential amount of non-equilibrium given 
enough pressure driving force to cause it to occur.  
 

 
Figure 11.1.9a, Large Pressure-undershoot 
 

 
Figure 11.1.9b, Intermediate Pressure-
undershoot 
 

 
Figure 11.1.9c, Minimum Pressure-undershoot 
 

 
 

Figure 11.1.9, Pressure-undershoot at Point of Maximum Acceleration for l=114.3 mm (4.5 inches) 
 
The non-equilibrium phenomena shown in Figure 11.1.9 can be quantified by defining an “efficiency” to 
adjust the pressure-undershoot determined by the Alamgir and Lienhard correlation. The “driving force” 
for non-equilibrium is the difference between the fluid saturation pressure and the local pressure at the 
location of the maximum depressurization rate. The “efficiency” can be thought of as an approach to 
equilibrium. 
 

(𝑃௦௔௧ − 𝑃௡,௥௘௟௔௫௘ௗ) = 𝜂(𝑃௦௔௧ − 𝑃௡,஺ି௅)   (11.1.13) 
 
The nucleation pressure calculated using the Alamgir and Lienhard correlation is adjusted with the 
approach to equilibrium “efficiency” to determine the nozzle throat pressure, Pn,relaxed. The nozzle throat 
pressure is then used in Equation 11.1.14 to estimate the mass flux. 
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𝐺 = ඨ
ଶఘబ൫௉బି௉೙,ೝ೐೗ೌೣ೐೏൯

ଵା௙ವ
೗

೏

     (11.1.14) 

 
In practice a trial-and-error solution is required because the maximum depressurization rate and the 
local pressure at the location of the maximum depressurization rate are not known a priori. The 
calculation method is described and an example calculation is provided in Appendix B. 
 
The approach to equilibrium efficiency is depicted as a function of the “driving force” for nucleation in 
Figure 11.1.10.  A solid line is drawn at an efficiency of one to indicate values larger than one are not 
used. The reasons for values greater than one obtained during the data analysis are described in the 
next paragraph.  
 
The premise for the use of the Bernoulli or Burnell equations to estimate nozzle critical flow is that rapid 
flashing occurs predominately near the nozzle exit. The difference between the two equations is that 
boiling is “delayed” below the saturation pressure when using the Burnell equation. A nucleation delay 
time of 1 millisecond has been reported (see for example Sozzi and Sutherland (1975) “Discussion of 
Results”). With a 1 millisecond nucleation delay time, flashing almost certainly occurs downstream of 
the Sozzi and Sutherland “zero” length nozzle and likely also occurs downstream of the 12.7 mm (0.5 
inch) long nozzle. The residence time in the straight section of the 12.7 mm (0.5 inch) long nozzle is 0.14 
– 0.17 milliseconds assuming all liquid flow. The transition between flashing downstream of the nozzle 
and flashing in the nozzle likely occurs in the 38.1 mm (1.5 inches) long nozzle, with flashing possibly 
occurring downstream of the nozzle for the most subcooled data points and within the nozzle for the 
least subcooled data points. The data points in Figure 11.1.10 having efficiencies greater than one are 
for the shortest nozzles where flashing is likely occurring downstream of the nozzles and are thus not 
applicable for the current model premise.   
 

 
Figure 11.1.10, Efficiency of Converting Potential Bubble Nucleation Pressure to Nozzle Throat 
Pressure 
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The nozzle throat pressures were not generally provided in the Sozzi and Sutherland (1975) data so the 
nozzle throat pressure calculated using Equation 11.1.13 (notated as Pnucleation to represent use of the 
nucleation theory) is compared to the nozzle throat pressure using the Burnell equation in Figure 
11.1.11. The agreement is generally acceptable. To be clear, experimental values of the stagnation 
pressure and mass flux were used in Equation 4.1.2 to calculate the Burnell C factor and the “Burnell” 
throat pressure along with the equation 𝑃௧ = (1 − 𝐶)𝑃௦. Disagreement between the two calculation 
methods occurs for the two shortest nozzles (0 and 12.7mm) when flashing takes place downstream of 
the nozzle.  
 
Two comparisons of the mass fluxes calculated using the bubble nucleation method and the 
experimental data are found in Figure 11.1.12. Again the bubble nucleation method provides generally 
good agreement with the measured data except for the shortest nozzles. Calculation of the Burnell C 
factor is straightforward given the nozzle throat pressure. The Burnell C factor calculated using the 
nucleation theory is compared to that calculated using the Burnell equation in Figure 11.1.13. Again, 
when choking is concurrent with flashing at the nozzle throat, the two methods agree. The exceptions 
are when choking occurs downstream of the nozzle throat in the two shortest nozzles. 
 

 
Figure 11.1.11, Sozzi and Sutherland (1975) Nozzle 2 Outlet Pressures 
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Figure 11.1.12, Sozzi and Sutherland (1975) Nozzle 2 Mass Fluxes 
 

 
Figure 11.1.13, Sozzi and Sutherland (1975) Nozzle 2 Burnell C Factor 
 
11.2 Prisco (1975) R-11 Data 
Prisco (1975) studied the flow of R-11 (CCl3F) through nozzles with sharp-edged entrances. Data from 
two geometries are considered herein. The first geometry is a nozzle with a constant-diameter portion 
followed by a 7° diverging exit cone (Figure 11.2.1), referred to as Nozzle C7. A face cut was taken across 
the inlet flange and nozzle entrance on a lathe to ensure a sharp-edged entrance. The inside surface of 
the upstream constant-diameter portion was polished with emery paper. The nozzle inside diameter is 8 
mm (0.313 inch) and data was collected for three length-to-diameter ratios: 12.78, 7.96 and 2.82. The 
length of the constant-diameter portion of the nozzles was varied to achieve the reported length-to-
diameter ratios. The nozzle inlet flange was connected to a 50.8 mm (2 inch) diameter port located on 
the R-11 supply vessel, resulting in a beta ratio for the sudden contraction of about 0.16.    
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Figure 11.2.1, Nozzle C7 (from Prisco, 1975) 
 
The second nozzle considered is referred to as Nozzle C120. This nozzle has a constant-diameter portion 
followed by a 120° diverging exit cone. The diverging cone is followed by a second constant-diameter 
section (Figure 11.2.2). As with Nozzle C7, a face cut was taken across the inlet flange and nozzle 
entrance on a lathe to ensure a sharp-edged entrance and the inside surface of the upstream constant-
diameter portion was polished with emery paper. The nozzle inside diameter is 8 mm (0.313 inch) and 
data was collected for three length-to-diameter ratios: 12.78, 7.97 and 2.82. The length of the upstream 
constant-diameter portion of the nozzles was varied to achieve the reported length-to-diameter ratios. 
The nozzle inlet flange was connected to a 50.8 mm (2 inch) diameter port located on the R-11 supply 
vessel, resulting in a beta ratio for the sudden contraction of about 0.16.    

 
Figure 11.2.2, Nozzle C120 (from Prisco, 1975) 
 
In the case of sharp-edged nozzles, and other configurations in which a vena contracta is formed, the 
fluid state throughout the entire flow path must be considered for saturated and slightly subcooled 
liquid flow into the nozzle. Three cases arise due to the vena contracta, depending upon the local 
pressure relative to the fluid vapor pressure at the minimum pressure location (at the vena contracta) 
and after pressure recovery (downstream of the vena contracta). Figure 11.2.3 provides a plot of 
pressure versus location for flow in a sharp-edged nozzle for equilibrium flow.  As a matter of clarity, the 
term “separation point” designates where fluid streamlines separate from the duct wall upstream of the 
contraction plane and “detachment” designates fluid separation at the contraction plane.  A horizontal 
dashed line is shown representing the local vapor pressure of the fluid.  Three cases typically presented 
for equilibrium flow are illustrated. For non-equilibrium flow, the bubble nucleation pressure is an 
additional consideration. If the fluid pressure remains above the vapor pressure for the entire flow path, 
then Bernoulli flow applies (Figure 11.2.3, case a).  If no flashing occurs along the flow path, then the 
smallest cross-sectional area for flow occurs at the vena contracta. The flow rate through the nozzle can 
thus be estimated using the upstream pressure, vena contracta pressure, and vena contracta flow area 
in the Bernoulli equation.   
 
The second case to be considered is cavitating flow (Figure 11.2.3, case b). In this case, the pressure at 
the vena contracta drops below the vapor pressure, but the pressure recovery returns the fluid pressure 
to a value greater than the vapor pressure. The central liquid core in the separation zone is surrounded 
by a vapor cloud and flashing in the liquid core occurs in a cavitation region where the local pressure is 
less than the vapor pressure. Ferrari (2017) reports observations of bubbly flow and bubble foam 

Flow 

Flow 
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patterns during incipient cavitation stages independent of nozzle geometry. As the amount of cavitation 
increases, the presence of long strips of vapor and vapor films have been observed that do depend on 
the nozzle geometry. Upon pressure recovery, after the vena contracta, rapid collapse of the cavitation 
pockets can occur. Depending upon the extent of cavitation, instability can occur in which periodic vapor 
cloud formation and shedding occurs. 
 
The final case to be considered is flashing flow (Figure 11.2.3, case c). In this case, the pressure at the 
vena contracta drops below the vapor pressure and even after pressure recovery, the fluid pressure 
remains below the vapor pressure. To further complicate the matter, Ferrari (2017) reports that the 
fluid reattachment point downstream of the vena contracta can move instantly to the nozzle exit once 
the length of the vapor cavity surrounding the liquid jet reaches about 25-35% of the nozzle length. 
When the vapor cavity length exceeds the nozzle length, and the nozzle outflow is into a vapor, the 
liquid core is unable to reattach to the nozzle wall. When this occurs, the liquid jet exits the nozzle into 
the downstream environment without pressure recovery. Ferrari (2017) refers to this condition as a 
“hydraulic flip”. The hydraulic flip is characterized by a sudden reduction in friction losses because there 
is no contact between the flowing liquid and the nozzle walls. He also reports no hydraulic flip occurs for 
L/D ≥ 8 while it does occur at L/D = 4. Figure 11.2.3, case c is the pressure profile typically associated 
with pressure relief valve nozzle analysis where choking is assumed to occur at the nozzle throat, e.g., 
the HEM applies. 
 

 
Figure 11.2.3, Fluid Flow Path Considerations for a Vena Contracta with Equilibrium Flow 
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In the case of non-equilibrium flow, the fluid superheating occurs during the acceleration to the vena 
contracta. If the nozzle length downstream of the vena contracta is long enough for fluid reattachment 
and there is enough residence time for the relaxation phenomena to occur, then choking occurs at the 
nozzle throat based on the local fluid equilibrium conditions. If not, then non-equilibrium effects 
influence the nozzle capacity. The immediate question is how to estimate the depressurization rate from 
acceleration losses in the presence of flow separation. It is proposed that the relevant acceleration 
losses take place from the fluid detachment point at the nozzle inlet to the vena contracta.  
 
Streamlines are known to separate from duct walls and acceleration to occur upstream of the sudden 
contraction (Figure 11.2.4).  The entire streamline path from the upstream separation point past the 
detachment point at the nozzle contraction plane and into the vena contracta is used to estimate the 
relevant fluid acceleration. Rennels and Hudson (2012) provide a correlation for the jet velocity ratio 
(λ=uvc/u1) as a function of the beta ratio (β=d2/d1), Equation 11.2.1 
 

𝜆 = 1 + 0.622(1 − 0.215𝛽ଶ − 0.785𝛽ହ)   (11.2.1) 
 
The jet velocity ratio obtained from Equation 11.2.1 was used to calculate the vena contracta flow area 
in the Prisco data analysis. 
 

 
Figure 11.2.4, Streamlines in a Sudden Contraction  
 
Dimensions required for estimating depressurization rates from Bullen (1996) are summarized in Table 
11.2.1. The data from Bullen were acquired using an upstream diameter d1 = D = 110 mm. The 
downstream diameter (d2 = d) was varied to achieve the desired area ratios. Given the jet velocity ratio 
and the relevant nozzle dimensions, what remains to determine is the fluid acceleration rate. 
 
A2/A1 0.13-0.67 
Reynold’s Number 40,000-200,000 
Upstream separation point (distance upstream of contraction plane) 1-1.5D 
Vena contracta location (distance downstream of contraction plane) 0.225D 
Downstream reattachment point (distance downstream of contraction plane) ~0.5D 
Table 11.2.1, Dimensions of Detachment and Reattachment Points in Nozzle Flow from Bullen (1996) 
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Figure 11.2.5, Vena Contracta Calculation Nomenclature 
 
Figure 11.2.5 illustrates the nomenclature used to calculate the vena contracta dimensions. The 
streamline upstream of the contraction plane (z=0) is assumed to be represented by a power law 
relationship 
 

𝑦௨ = 𝑎ଵ(𝑧 + 𝑙ଵ)௕భ      (11.2.2) 
At 𝑧 = 0, 𝑦௨ = ℎ଴, ∴ ℎ଴ = 𝑎ଵ(𝑙ଵ)௕భ 
 
The streamline flow from the contraction plane to the vena contracta is assumed to be represented by a 
parabola  
 

𝑦ௗ = −𝑎ଶ(𝑧 − 𝑙ଶ)ଶ + ℎ௩௖ + ℎ଴    (11.2.3) 
At 𝑧 = 0, 𝑦ௗ = ℎ଴, ∴ ℎ௩௖ = 𝑎ଶ(𝑙ଶ)ଶ 
 
Note, with the assumed parabolic shape, the fluid reattachment point is twice the distance from the 
contraction plane as the vena contracta. Requiring the slopes of Equations 11.2.2 and 11.2.3 to be equal 
at z = 0 for continuity of the two descriptive functions, gives  
 

𝑏ଵ =
ଶ௔మ௟భ௟మ

௛బ
= 2

௟భ

௟మ

௛ೡ೎

௛బ
     (11.2.4) 

 
With the stated assumptions, all of the equation constants are specified. The resulting flow areas are  
 

𝐴௨ =
గ

ସ
[𝐷 − 2𝑎ଵ(𝑧 + 𝑙ଵ)௕భ]ଶ    (11.2.5) 

 
𝐴ௗ = [(𝑑 − 2ℎ௩௖) + 2𝑎ଶ(𝑧 − 𝑙ଶ)ଶ]ଶ   (11.2.6) 

 
The residence times before and after the contraction plane are determined by integration of Equation 
11.2.7. 

𝑢 =
ௗ௭

ௗ௧
=

௠̇

ఘ஺
     (11.2.7) 

 
The residence times upstream and downstream of the contraction plane are then 
 

𝜏௨ =
ఘ

௠̇

గ

ସ
∫ [𝐷 − 2𝑎ଵ(𝑧 + 𝑙ଵ)௕భ]ଶ଴

ି௟భ
𝑑𝑧   (11.2.8) 
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ቁ   (11.2.9) 
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ఘ
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గ
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ସ

ଷ
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ସ

ହ
ℎ௩௖
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The fluid depressurization rate is determined by Equation 11.1.8, repeated here for convenience 
 

ௗ௉

ௗ௧
= 𝑢

ௗ௉

ௗ௭
=

ఘ௨య

஺

ௗ஺

ௗ௭
=

௠య̇

ఘమ஺ర

ௗ஺

ௗ௭
     (11.1.8) 

 
The derivatives of the flow areas with respect to distance are given by 
 

ௗ஺ೠ

ௗ௭
= −𝜋𝑎ଵ𝑏ଵ[𝐷 − 2𝑎ଵ(𝑧 + 𝑙ଵ)௕భ] (𝑧 + 𝑙ଵ)௕భିଵ    (11.2.12) 

 
ௗ஺೏

ௗ௭
= 2𝜋𝑎ଶ[(𝑑 − 2ℎ௩௖) + 2𝑎ଶ(𝑧 − 𝑙ଶ)ଶ](𝑧 − 𝑙ଶ)   (11.2.13) 

 
Once again, the location of the maximum rate of depressurization is found by differentiating Equation 
11.1.8 with respect to distance and setting the result equal to zero. The maximum rate of 
depressurization is found to be located in the vena contracta as given in Equation 11.2.14. 
 

𝑧௔,௠௔௫ = 𝑙ଶ − ට
ௗିଶ௛ೡ೎

ଶ଺௔మ
     (11.2.14) 

 
An example illustrating the depressurization rate calculated using data from Prisco’s (1975) Nozzle C120, 
Run 1-2-1 data is found in Figure 11.2.6. In Prisco’s Run 1-2-1, the nozzle length/diameter ratio is 12.78 
and the nozzle constant diameter length is 101.6 mm (4 inches). In Figure 11.2.6, the distance on the 
abscissa is from the fluid streamline separation point upstream of the nozzle contraction plane to the re-
expansion of the vena contracta downstream of the contraction plane. The contraction plane is located 
at z = 0. The depressurization rate depends on the beta ratio and the depressurization rate downstream 
of the contraction plane is larger than the depressurization rate upstream of the contraction plane for a 
wide range of beta ratios. The magnitude of superheating due to fluid acceleration is thus largely 
controlled by acceleration from the detachment point at the contraction plane to the vena contracta. 
The result is consistent with Prisco’s (1975) conclusion that “the non-equilibrium is caused when the 
fluid sustains a sudden pressure drop as it passes through the sharp-edged entrance.” 
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Figure 11.2.6, Example Calculated R-11 Depressurization Rate for Prisco (1975) Nozzle C120, Run 1-2-1 
 
The data from Prisco was analyzed to determine if Bernoulli flow, cavitating flow or flashing flow was 
occurring. Prisco’s experimental procedure included stirring the R-11 with nitrogen while heating or 
cooling to ensure thermal homogeneity. He then used air pressure to maintain a constant static 
pressure above the R-11 during the experimental runs. It is safe to say the R-11 was saturated with 
nitrogen and analysis of the data supports that premise. It is straightforward to calculate the nitrogen 
partial pressure and thus nitrogen solubility in each run. The mole fraction of nitrogen in the liquid 
phase ranges from 0.0002 to 0.0008. If equilibrium flow was occurring, clearly nitrogen would come out 
of solution as the pressure decreased below the stagnation pressure. 
 
The vena contracta pressure can be estimated using the Bernoulli equation and by assuming frictionless 
flow. The calculated vena contracta pressures are compared to data Prisco provided along the axial 
distance of the nozzles in Figure 11.2.7. In Figure 11.2.7, the notation Psx indicates the pressure 
measured at the pressure tap nearest to the inlet of the nozzle. The agreement between the calculated 
and measured pressures supports the conclusion that the vena contracta pressure is largely determined 
by pressure losses associated with fluid acceleration. It is also noteworthy that there was essentially no 
axial pressure drop between the vena contracta and the nozzle exit plane indicated in Prisco’s data. 
Example pressure profiles are shown in Figure 11.2.8. The lack of pressure recovery after the vena 
contracta indicates fluid reattachment to the nozzle wall downstream of the vena contracta did not 
occur. These observations support Prisco’s conclusions that the flow occurred in a central core 
consisting of a superheated liquid jet surrounded by a two-phase mixture annulus (Figure 11.2.9). 
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Figure 11.2.7a, Prisco Nozzle C7 

 
Figure 11.2.7b, Prisco Nozzle C120 

Figure 11.2.7, Vena Contracta Pressure for Prisco (1975) Nozzles 
 

 
Figure 11.2.8a, Prisco Nozzle C7 

 
Figure 11.2.8b, Prisco Nozzle C120 

Figure 11.2.8, Prisco (1975, Figure 4.3a) Measured Pressure Profiles 
 

 
Figure 11.2.9, Prisco (1975) Flow Pattern  
 
If the flow is a superheated jet flowing down the center of the constant-diameter portion of the nozzle, 
with choking essentially located at the exit plane, then the mass flow rate data can be evaluated using 
the Bernoulli equation for liquid flow with the downstream pressure equal to the vena contracta 
pressure and the flow area equal to the vena contracta cross-sectional area. The pressure measured at 
the pressure tap nearest to the inlet of the nozzle, Psx in Figure 11.2.7, was used to approximate the 
vena contracta pressure and the flow area was estimated using the jet velocity ratio, from Equation 
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11.2.1. The results of these calculations are illustrated in Figure 11.2.10. The calculated mass flow rate 
agrees well with the measured flow rate. This result further substantiates the viewpoint that flow 
detachment occurs at the square-edged entrance plane and forms a superheated fluid core flowing 
down the center of the nozzles. The pressure in the liquid core is thus equal to the stagnation pressure 
minus acceleration losses and there is negligible wall friction. The saturated vapor annulus surrounding 
the superheated fluid core is, for all practical purposes, stagnant. Pressure measurements along the 
length of the constant-diameter portion of the nozzles and high speed videos from a transparent test 
section by Prisco substantiate this conclusion. 
 

 
Figure 11.2.10a, Prisco Nozzle C7 

 
Figure 11.2.10b, Prisco Nozzle C120 

Figure 11.2.10, Mass Flow Rate Calculated using Vena Contracta Conditions for Prisco (1975) Nozzles 
 
The experimental protocol followed by Prisco involved adjusting operating conditions such that choking 
occurred at the nozzle exit plane. The residence times in the straight sections of the nozzles are 30 – 
65% of the Downwer-Zapolski relaxation times. Given no pressure drop in the straight sections, short 
residence times compared to the relaxation times and flashing in the exit plane of the nozzle, it is 
concluded that mass flux calculations using Bernoulli flow are appropriate. Given the measured mass 
flow rate, a mass flux can be calculated based on the vena contracta cross-sectional area. This mass flux 
is of course higher than that reported by Prisco, which is based on the nozzle inside diameter. Given the 
inlet fluid is saturated with soluble nitrogen, Burnell’s equation becomes Equation 11.2.15 with “Ps” 
equal to the equilibrium pressure of nitrogen above the R-11. 
 

𝐺 = ඥ2𝜌𝐶𝑃௦     (11.2.15) 
 
and 

∆𝑃஻௨௥௡௘௟௟ = 𝐶𝑃௦    (11.2.16) 
 
The “Burnell pressure drop” is defined as the pressure drop calculated using the Burnell equation 
required to match the experimental mass flux and is compared to the measured pressure drop in Figure 
11.2.11. It is observed in these plots that pressure drop is matched better with the nozzle C7 data than 
with nozzle C120. One possible reason that the calculations match the data for nozzle C7 better than 
that for nozzle C120 is because of the location of the exit pressure taps. The exit pressure tap was 
located at the nozzle exit plane in nozzle C7 but it was slightly upstream (0.25 mm, 0.010 inch) of the 
exit plane in nozzle C120. Rapid depressurization, and likely flashing, occurred slightly upstream of the 
exit plane in the Nozzle C120 experiments.  
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Figure 11.2.11a, Prisco Nozzle C7 

 
Figure 11.2.11b, Prisco Nozzle C120 

Figure 11.2.11, “Burnell pressure drop” versus Measured Pressure Drop for Prisco (1975) Nozzles 
 
The bubble nucleation method can be used to correlate the Burnell calculation results. The R-11 
depressurization diagram with Prisco Nozzle C7 data for L/D = 2.82 is illustrated in Figure 11.2.12. The 
diagram was developed using scaling of the Gibb’s number as previously discussed. Depressurization 
rates were selected to encompass the range of values indicated by Prisco’s data. Figure 11.2.12a shows 
the entire diagram while Figure 11.2.12b shows the portion of the diagram where experimental data are 
located. One can see reasonable agreement between the data and nucleation theory calculation results. 
The curves for various depressurization rates practically coincide because of the small depressurization 
rates. It is important to note that the agreement was achieved by properly accounting for the nitrogen 
partial pressure. The calculated pressures were adjusted by adding the nitrogen partial pressure to the 
pressure drop calculated using the Alamgir and Lienhard correlation.  
 

(𝑃௦ − 𝑃௡,௔ௗ௝௨௦௧௘ௗ) = ൣ(𝑃௦ − 𝑃௡,஺ି௅) + 𝑃ே௜௧௥௢௚௘௡൧   (11.2.17) 
 
This result is equivalent to application of the bubble nucleation theory with a dissolved inert gas, 
wherein the pressure inside the bubble is equal to the vapor pressure of the fluid plus the partial 
pressure of inert gas.  
 

 
Figure 11.2.12a, R-11 Depressurization Diagram 

 
Figure 11.2.12b, R-11 Depressurization Diagram 
Expanded to show Data Region 

Figure 11.2.12, R-11 Depressurization Diagram for Prisco (1975) Nozzle C7, L/D = 2.82 
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Application of the nucleation theory for R-11 is illustrated in Figures 11.2.13 and 11.2.14. In Figure 
11.2.13 the calculated nozzle outlet pressure for Nozzle C7 shows good correlation with the measured 
data while the correlations show more deviation for Nozzle C120. In Figure 11.2.14 the mass fluxes are 
based on the vena contracta cross-sectional area. The bubble nucleation method shows reasonable 
agreement with the data for both nozzle geometries.  Some dependence on nozzle length is observed. It 
is speculated that the nozzle length dependence is due to relaxation phenomena because the residence 
time in the nozzle straight section is equivalent to about 1 relaxation time for L/D = 2.82 and about 2.5 
relaxation times for L/D = 12.78 according to the Downer-Zapolski correlation. (Increased relaxation 
time results in increased flashing pressure at constant temperature because the fluid has more time to 
“recover” from the pressure-undershoot and approach equilibrium.) Finally, the Burnell C factor 
calculated using the experimental data (axis labelled “Burnell C”) is compared to the Burnell C factor 
calculated using the nucleation theory in Figure 11.2.15. The observations regarding exit pressure trends 
also apply to the Burnell C factor comparisons. It is important to note the inlet saturation pressure was 
used to calculate the Burnell C factors rather than the R-11 vapor pressure because of the nitrogen 
saturation of the R-11 in the feed vessel.  
 
 

 
Figure 11.2.13a, Prisco Nozzle C7 

 

 
Figure 11.2.13b, Prisco Nozzle C120 

Figure 11.2.13, Prisco (1975) Nozzle Outlet Pressure 
 
 

 
Figure 11.2.14a, Prisco Nozzle C7 

 

 
Figure 11.2.14b, Prisco Nozzle C120 

Figure 11.2.14, Prisco (1975) Nozzle Mass Fluxes based on Vena Contracta Area 
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Figure 11.2.15a, Prisco Nozzle C7 

 

 
Figure 11.2.15b, Prisco Nozzle C120 

Figure 11.2.15, Prisco (1975) Nozzle Burnell C Factor Values  
 
12. Conclusions 
Unification of bubble nucleation kinetics and thermodynamic stability analyses used to describe Rapid 
Phase Transitions (RPT), Boiling Liquid Expanding Vapor Explosions (BLEVE) and flow through nozzles 
provides a method to quantify non-equilibrium effects on calculated nozzle choking pressures and 
critical mass flow rates. The proposed method addresses known deficiencies of the Homogeneous 
Equilibrium Model for flow of saturated or slightly sub-cooled liquid through nozzles.  Conclusions 
reached from the study of the Sozzi and Sutherland (1975) and Prisco (1975) data sets are:  

1. Nozzle flow can approach equilibrium flow when:  
a. initial fluid temperature approaches the critical temperature because the amount of 

superheating due to rapid depressurization is constrained by the spinodal curve, e.g., 
less superheating is possible due to thermodynamic instability 

b. small rates of depressurization due to fluid acceleration occur, e.g., small available 
pressure driving force or appropriately rounded nozzle inlet geometries limit the 
maximum depressurization rate 

c. the local pressure is above the fluid vapor pressure at the location in the nozzle where 
the maximum depressurization rate occurs, e.g., at a given temperature, as the amount 
of subcooling increases due to increasing pressure, greater acceleration losses are 
required to decrease the local pressure to below the vapor pressure at the location of 
the maximum depressurization rate  

d. long residence time in the nozzle straight section downstream of the converging section 
allows enough time for relaxation 

2. Otherwise, non-equilibrium flow should be considered for saturated or slightly subcooled liquid 
flow into a nozzle. 

3. Proper accounting of fluid thermodynamic properties is essential. For example Prisco’s 
experimental procedure included saturating the R-11 with nitrogen and thus all the test cases 
were necessarily run with saturated inlet conditions. Soluble inert gas complicates application of 
the bubble nucleation theory to determine the possible amount of fluid superheating because 
the partial pressure of inert gas increases the pressure inside of the nucleating bubbles above 
the fluid vapor pressure.  



42 
 

4. The “heterogeneity factors” for nozzle flow have mostly been developed for water–steam flow. 
It is plausible that methodical testing of fluids with a variety of physical properties may lead to 
heterogeneity factor correlations that depend on the fluid physical properties. Based on the 
limited number of tests analyzed herein, scaling of the Gibbs number relative to water and then 
application of the pressure-undershoot correlation from Alamgir and Lienhard (1981) provides 
reasonable estimates for the maximum expected amount of superheating due to rapid 
depressurization.  

5. The inlet geometry of short nozzles plays a key role in the amount of superheating because the 
inlet geometry determines the maximum rate of depressurization for a given pressure driving 
force. Empirical correlations developed from data using nozzles with rounded inlets may not be 
applicable to nozzles with sharp-edged inlets because of geometry effects. In the case of 
rounded inlets (wherein no vena contracta is formed), the change in area with respect to 
distance (dA/dz) determines the maximum rate of depressurization. In the case of square-edged 
inlets, the fluid acceleration from the point of fluid detachment at the contraction plane to the 
vena contracta determines the maximum rate of depressurization. 

6. Where a vena contracta is formed, it is important to note whether fluid reattachment 
downstream of the vena contracta occurs. In the case of short nozzles where fluid reattachment 
does not occur, the relevant flow area is the vena contracta cross-sectional area. Also without 
flow reattachment, there are no frictional losses along the nozzle wall. In the Prisco data 
analysis, the flow area can be represented by the cross-sectional area of the vena contracta 
because the flow did not reattach to the nozzle wall after the vena contracta. The data also 
indicates that application of a resistance coefficient for the sudden contraction is not 
appropriate in this situation. 

7. Exit geometry can be the source of measurement error depending on the location of the exit 
pressure tap relative to the nozzle exit. In the Prisco nozzle C120 experiments, the presence or 
absence of exit plane choking was determined using a pressure tap 0.25 mm (0.010 inch) 
upstream of the exit plane while in the nozzle C7 experiments, the exit pressure tap was located 
at the exit plane. Given the rapid pressure drop upon flashing initiation at the nozzle exit, the 
measured “exit” pressures were 7 – 14 kPa (1 – 2 psi) lower in the C120 experiments than in the 
C7 experiments. This is likely due to the rapid pressure drop associated with flashing at the exit 
plane and the location of the pressure taps. 

8. Models such as the Homogeneous Relaxation Model (HRM) should consider the amount of 
superheating due to rapid depressurization in the specification of the initial conditions for 
integration. 

 
13. Summary 
A bubble nucleation method to estimate the flow rate of saturated and slightly subcooled liquids 
through nozzles is proposed. The premises of the method are:  

1. The available pressure driving force causes rapid depressurization of the fluid at the nozzle inlet 
due to the reduction in area available for flow determined by the nozzle geometry. The method 
is applied to both converging and square-edged inlet geometries by following the flow 
streamlines.  

2. The amount of potential pressure-undershoot is determined using a pressure-undershoot 
correlation at the point in the nozzle where the maximum rate of depressurization occurs. The 
pressure-undershoot correlation is fluid composition dependent, as reflected by variation of the 
Gibbs number with composition.  

3. The realized pressure-undershoot is determined by adjusting the potential pressure-undershoot 
with an approach to equilibrium “efficiency” based on the amount of superheating at the 
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location in the nozzle where the maximum depressurization rate occurs. The nozzle throat 
pressure is determined by the realized pressure-undershoot value.  

4. Rapid vaporization occurs essentially at the nozzle throat after a bubble nucleation time delay 
resulting in choking at the nozzle throat.  

 
One “skilled in the art” might immediately question various aspects of the proposed method, for 
example: 

1. The pressure-undershoot correlation was developed for water and applied to other fluids using 
the Gibbs number.  

2. The fluid inlet cannot be “too sub-cooled” because flashing will not occur in the nozzle (resulting 
in Bernoulli flow). 

3. The nozzle cannot be “too short” because flashing will occur downstream of the nozzle due to 
the bubble nucleation time delay. 

4. The nozzle cannot be “too long” because flashing may occur upstream of the nozzle throat due 
to the bubble nucleation time delay and because of fluid “relaxation” phenomena taking place. 

 
The above list is purposely qualitative because it identifies areas for further research. 
 
14. Recommendations for Further Work 
Recommendations for further work are: 
 

1. The Alamgir and Lienhard (1981) pressure-undershoot correlation was developed from rapid 
depressurization experimental data, for example see Alamgir, et al. (1980). The rapid 
depressurization experiments typically involved filling a closed tube with water, heating and 
pressurizing to the desired initial conditions, “bursting” open the outlet end of the tube and 
then measuring the depressurization rate and pressure-undershoot. Similar experiments with 
imposed backpressures are recommended to quantify the back pressure effect on 
depressurization rate and amount of pressure-undershoot. These experiments are 
recommended with a variety of other chemicals (including mixtures) to verify using the Gibbs 
number to scale the pressure-undershoot correlation. 

2. Critical flow experiments with nozzles having various inlet geometries, e.g., varying the radius of 
curvature and beta ratio, are recommended to validate the interpretation of geometric effects 
changing the fluid streamlines and use of the maximum depressurization rate in the pressure-
undershoot correlation. These experiments should also include a variety of other chemicals 
(including mixtures) to validate application to nozzle flow calculations of the pressure-
undershoot correlation and the approach to equilibrium correlation. The nozzle lengths should 
also be varied to determine the location of flashing inception and the role of the boiling 
nucleation time delay. 
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15. Nomenclature 
a1, a2 = constants to describe the vena contracta shape (Equations 11.2.2 and 11.2.3) 
A = flow area 
Ad = flow area downstream of the contraction plane 
Amin = minimum nozzle flow area (nozzle throat or vena contracta area) 
Au = flow area upstream of the contraction plane 
b1 = constant to describe the vena contracta shape (Equations 11.2.2 and 11.2.3) 
C = Burnell (1947) factor (Equation 4.1.1)  
CD = discharge coefficient 
d = inside diameter 
dc = diameter in the nozzle converging portion 
dvc = diameter of the vena contracta 
d0 = small diameter 
d1 = upstream diameter 
d2 = downstream diameter  
D = large diameter  
fD = Darcy (Moody) friction factor 
g = acceleration of gravity 
gc = Newton’s law conversion factor 
G = mass flux 
Gc = critical mass flux 
Gb = Gibb’s number (=WCR/kT) 
Gbw = Gibbs number for water 
h = vertical displacement 
h0 = (D-d)/2 
hvc = (d – dvc)/2 
H2 = head loss based on the smaller downstream diameter 
J = nucleation rate 
k = Boltzmann’s constant 
K2 = head loss coefficient based on the smaller downstream diameter 
l = length of nozzle constant-diameter portion 
l1 = distance from pipe contraction plane to upstream fluid separation point 
l2 = distance from pipe contraction plane to vena contracta  
L = length of Sozzi and Sutherland nozzle converging section 
𝑚̇ = mass flow rate 
N = Fauske (1971) non-equilibrium factor (Equation 4.2.1)   
P = pressure 
P0 = nozzle inlet pressure 
Pa = normal atmospheric pressure 
Pa,max = pressure at the point of maximum depressurization rate 
Pb = pressure inside a bubble 
PFi = flashing inception pressure 
Pn = bubble nucleation pressure 
Po = flashing onset pressure  
Ps = fluid saturation pressure 
Ps = fluid saturation pressure at location x in the nozzle 
Pt = nozzle throat pressure (e.g., exit of the straight section) 
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Pu = fluid undershoot pressure 
Pv = fluid vapor pressure 
Pvc = nozzle pressure at the vena contracta 
t = time  
T = temperature 
Tb = normal boiling point 
Tc = thermodynamic critical temperature 
Ti = inlet (initial) temperature 
Tr = reduced temperature (T/Tc) 
u = velocity 
uvc = jet velocity in the vena contracta 
u1 = upstream velocity 
u2 = downstream velocity 
v = specific volume 
vf = fluid specific volume  
vg = gas specific volume 
WCR = net energy required to form a bubble [=16𝜋𝜎ଷ/3(Δ𝑃௖)ଶ] 
x = fluid quality 
xE = equilibrium fluid quality 
x0 = inlet quality 
y = vertical distance above the bottom of the large pipe 
yd = vertical distance downstream of the contraction plane 
yu = vertical distance upstream of the contraction plane 
z = axial distance  
za,max = location of maximum depressurization rate 
 
β = diameter ratio 
є = void fraction 
η = efficiency 

ηs = Ps/P0 
ηt = Pt/P0 
θ = relaxation time 
λ = jet velocity ratio 
ρ = density 
ρf = fluid density 
ρg = gas density 
ρt = fluid density at the nozzle throat 
ρ0 = fluid density at the nozzle inlet 
σ = surface tension 
Σ′଴ = depressurization rate 
Σ′଴ = transient depressurization rate equal to zero for steady flows 
τ = residence time 
τd = residence time downstream of the contraction plane 
τu = residence time upstream of the contraction plane 
ϕ = bubble nucleation heterogeneity factor and Downer-Zapolski dimensionless pressure ratio 
ψ = Downer-Zapolski dimensionless pressure ratio 
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Appendix A, Scaling Gibbs Number 
Equation 10.3, repeated here for convenience, is used to estimate the Gibbs number for chemicals other 
than water. 

𝐺𝑏 = 𝐺𝑏௪ ቀ
ఙ

ఙೢ
ቁ

ଷ
೎்,ೢ

೎்
቎

൫௉ೞ,ೢି௉ೌ ൯

(௉ೞି௉ೌ )

ቆଵି
ഐ೒,ೢ

ഐ೑,ೢ
ቇ

ቆଵି
ഐ೒

ഐ೑
ቇ

቏

ଶ

ተ

ೝ்ୀ଴.ଽ

    (10.3) 

 
An estimation of the Gibbs number for R-11 is provided as an illustrative example. Variables used in 
Equation 10.3 are summarized in Table A1. All variables are evaluated at 0.9 times the critical 
temperature except the surface tension. The surface tension is evaluated at the R-11 normal boiling 
point. 
 

Variable water R-11 ratio 
Tc, K 647.31 471.38 1.3732 
Ps at 0.9 Tc, Pa 9,760,222 2,147,442  
Tb, K 373.15 296.92  
Pa, Pa 101,325 101,325  
Ps-Pa, Pa 9,658,897 2,046,117 4.7206 
ρg at 0.9 Tc, kg/m3 53.83 122.04  
ρf at 0.9 Tc, kg/m3 692.43 1088.38  
1-ρg/ρf 0.9223 0.8879 1.0387 
σ at 297K, N/m 0.0721 0.0179 0.2476 

Table A.1, Variable Summary 
 
Substitution of relevant ratios into Equation 10.3 yields R-11 Gb=14.13.  
 

𝐺𝑏 = 28.2 ∗ 0.2476ଷ ∗ 1.3732 ∗ (4.7206 ∗ 1.0387)ଶ = 14.13 
 
Use of the Gibbs number to develop the depressurization diagram is accomplished by substitution into 
Equation 7.4 with the heterogeneity factor given by Equation 7.6.  
  

ீ௕

ఝ
=

ଵ଺గఙయ

ଷ௞்(୼௉)మ      (7.4) 

 
𝜑 = 0.1058𝑇௥

ଶ଼.ସ଺[1 + 14(Σᇱ)଴.଼]    (7.6) 
 
The constant factor is given by 
 

𝑐 = ට
଴.ଵ଴ହ଼଼(ଵ଺గ)

ଷ(ଵସ.ଵଷ)
= 0.354     (A.1) 

 
Upon scaling for R-11, the estimated pressure-undershoot is given by 
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𝑃௦(𝑇௜) − 𝑃௡ = 0.354
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     (A.2) 
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Appendix B, Bubble Nucleation Method Calculation Procedure 
An illustrative example using water as the flowing fluid and the Sozzi and Sutherland (1975) nozzle 2 as 
the geometry is provided in this appendix. Relevant equations are Equation 7.7 to estimate the 
pressure-undershoot, Equation 10.1 to calculate the Burnell C factor, Equation 11.1.3 to calculate the 
flow area at the point of maximum depressurization rate, Equations 11.1.10 and 11.1.12 to estimate the 
maximum depressurization rate, Equation 11.1.13 to estimate the conversion “efficiency”, and 11.1.14 
to estimate the mass flux. The equations are repeated in the Appendix for convenience.  
 
The first step is to determine the position in the nozzle where the maximum change in area versus 
position occurs, ቀௗ஺

ௗ௭
ቁ

௠௔௫
The maximum rate of pressure change, ቀௗ௉

ௗ௧
ቁ

௠௔௫
, will occur at this position.  

Once this point is determined, the cross-sectional area, 𝐴௔,௠௔௫, at that position should also be 
determined. Note for the Sozzi and Sutherland nozzle 2 geometry, from Equation 11.1.11, the maximum 
depressurization rate occurs at z = 37.656 mm (1.4711 inches). Note,the reader will need to determine 
the correct location of the maximum depressurization rate for specific nozzle geometries.  
 
The second step is to determine an initial estimate of the mass flux. A convenient estimate is obtained 
using the Bernoulli equation (Equation 4.1.2) with the nozzle exit pressure equal to the fluid saturation 
pressure.  
 

 𝐺௚௨௘௦௦ = ඩ
2𝜌଴[𝑃଴ − 𝑃௦]

1 + 𝑓஽
𝑙
𝑑

 (4.1.2) 

 
𝑚̇ = 𝐺௚௨௘௦௦ ∙ 𝐴௠௜௡ 

 
The proper area to use in the mass flow rate calculation is geometry dependent. In nozzles where flow 
separation (or detachment) does not occur, the throat area should be used. Where flow separation 
occurs the vena contracta area should be used if the vena contracta does not reattach and the throat 
area should be used if the vena contracta does reattach. Given an initial estimated flow rate the 
procedure is iterative, with the steps outlined below.  The calculation sequence is as follows: 
 

1. Calculate the pressure at the point of maximum acceleration (𝑃௔,௠௔௫) by subtracting the 
acceleration loss from the nozzle inlet pressure 

𝑃௔,௠௔௫ = 𝑃଴ −
𝜌𝑢ଶ

2
= 𝑃଴ −

𝑚̇ଶ

2𝜌𝐴௔,௠௔௫
ଶ 

2. Calculate the difference between the saturation pressure and pressure at the point of maximum 
acceleration. 

𝑃௦௔௧ − 𝑃௔,௠௔௫ 
3. Calculate and the maximum depressurization rate (Σ’) using Equation 11.1.10.  

 ൬
𝑑𝑃

𝑑𝑡
൰

௠௔௫
= 𝑢

𝑑𝑃
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𝜌𝑢ଷ

𝐴௔,௠௔௫
൬
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൰

௠௔௫
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𝑚ଷ̇

𝜌ଶ𝐴௔,௠௔௫
ସ

𝜋ଶℎ଴

2𝐿
ቂ𝐷 − 2ℎ଴𝑠𝑖𝑛 ቀ

𝜋𝑧

2𝐿
ቁቃ 𝑐𝑜𝑠 ቀ

𝜋𝑧

2𝐿
ቁ 

 
(11.1.10) 

 Σᇱ = 𝑋௨௡௜௧௦ ൬−
𝑑𝑃

𝑑𝑡
൰

௠௔௫
 (11.1.12) 

 Note:  Σᇱ must be in units of Matm/s.  𝑋௨௡௜௧௦ is the appropriate unit conversion factor 
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4. Calculate (Psat-Pn,A-L) using the Alamgir and Lienhard correlation (Equation 7.7) 

 𝑃௦(𝑇௜) − 𝑃௡,஺ି௅ = 0.252
𝜎ଷ/ଶ𝑇௥

ଵଷ.଻ଷ[1 + 14(Σᇱ)଴.଼]ଵ/ଶ

ඥ𝑘𝑇௖ ൬1 −
𝑣௙

𝑣௚
൰

 (7.7) 

 
5. Calculate the approach to equilibrium “efficiency” of converting 𝑃௦(𝑇௜) − 𝑃௡,஺ି௅ to the throat 

pressure using the correlation in Figure 11.1.10.  
 

𝜂 = 0.736 ∙ ൫𝑃௦௔௧ − 𝑃௔,௠௔௫൯[MPa] + 0.434 
 

Note the maximum efficiency used is 1.0. Efficiency values greater than 1.0 are derived from the 
zero and 1.5 inch long nozzle data and not applicable for use in the current model because the 
flashing is believed to be occurring downstream of these short nozzles.  This correlation is unit 
specific.  The value of the difference between the saturation pressure and the pressure at 
maximum acceleration must be in MPa.   

6. Calculate the “relaxed” pressure nucleation pressure 𝑃௡,௥௘௟௔௫௘ௗ using Equation 11.1.13. 
 

 𝑃௡,௥௘௟௔௫௘ௗ = 𝑃௦௔௧ − 𝜂(𝑃௦௔௧ − 𝑃௡,஺ି௅) (11.1.13) 
 

7. Using the nucleation pressure estimate from step 6, calculate an updated estimate of the mass 
flux using Equation 11.1.14.  

 𝐺 = ඩ
2𝜌଴൫𝑃଴ − 𝑃௡,௥௘௟௔௫௘ௗ൯

1 + 𝑓஽
𝑙
𝑑

 (11.1.14) 

𝑚̇௡௘௪ = 𝐺 ∙ 𝐴௠௜௡ 
 

8. Repeat steps 1 – 7 until the estimated mass flux converges. 
 
As a specific example, consider the geometry variables for the Sozzi and Sutherland nozzle 2 in Table B.1 
and the fluid conditions provided in Table B.2. For the purposes of this example, isothermal flow of a 
constant density liquid was assumed. Physical properties used to calculate the nucleation pressure are 
evaluated at the saturated fluid temperature and pressure.  
 
The mass flux initial estimate is  
 

𝐺 ൬
𝑘𝑔

𝑚ଶ𝑠
൰ = ඨ2 ∙ 753.28 ∙

(6,536,232 − 6,265,613)

1.108
= 19,182 

 
With the Boltzmann constant k=1.38x10-23 J/K, the problem equations become 
 

𝐺(
௞௚

௠మ௦
) = ඥ2 ∙ 753.28 ∙ (6,536,232 − 𝑃௡)/1.108    (A2.1) 

 

(𝑃௦(𝑇௜) − 𝑃௡,஺ି௅)(𝑃𝑎) = 0.252
଴.଴ଵଽଷ଻

య
మ଴.଼ହଶ଺భయ.ళయቂଵାଵସ൫ஊᇲ൯

బ.ఴ
ቃ

భ
మ

଴.ଽହ଻ଵඥ(ଵ.ଷ଼௫ଵ଴షమ )(଺ସ଻.଴ଽ଺)
= 841,310[1 + 14(Σᇱ)଴.଼]

భ

మ (A2.2) 
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Σᇱ ቀ
௉௔

௦
ቁ =

௠య̇

(଻ହଷ.ଶ଼)మ(଴.଴଴଴ଵସ଺଺)ర

గమ(଴.଴ଵହଶହ)(଴.଴ଵଷ଺଺)(଴.ଶସଽଶ)

ଶ(଴.଴ସସହ)
= 21,968,885 ∙ 𝑚̇ଷ   (A2.3) 

 
The calculation results in Table B.3 show the convergence is adequate after about 20 iterations using 
direct substitution. This example took several iterations to converge because the initial estimate was far 
from the solution. The solution is readily found using modern methods to accelerate convergence. 
Finally, the Burnell C factor is estimated using Equation 10.1.   
 

𝐶 = 1 −
5.27

6.26
= 0.1581 
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Converging section length (L), mm 44.5 
Upstream diameter (D), mm 43.2 
Downstream diameter (d), mm 12.7 
Step height (h0), mm 15.25 

Maximum acceleration point (z), mm 37.3662 
𝜋𝑧

2𝐿
 1.3190 

𝑠𝑖𝑛 ቀ
𝜋𝑧

2𝐿
ቁ 0.9685 

 𝑐𝑜𝑠 ቀ
𝜋𝑧

2𝐿
ቁ 0.2492 

𝐷 − 2ℎ଴𝑠𝑖𝑛 ቀ
గ௭

ଶ௅
ቁ, mm 13.6619 

Area at point of maximum acceleration (Amax), m2 0.0001466 

Nozzle area (An), m2 0.0001267 

Nozzle straight section length (l), mm 114.3 

Friction factor (fD)(Note 1) 0.012 

1+fDl/d 1.108 

Table B.1, Geometric Variables 
Note 1: The friction factor represents fully turbulent flow through a 12.7 mm inside diameter tube with 
a “smooth” surface, e.g., a surface roughness of 1.52 m. 
 
P0, Pa 6,536,232 

T0, K 551.72 

ρ0, kg/m3 753.28 

σ, N/m 0.01937 

Ps, Pa 6,265,613 

Ts, K 551.72 

Tc, K 647.096 

Tr 0.8526 

ρf, lb/ft3 (Note 1) 752.88 

ρv, lb/ft3 (Note 1) 32.32 

1-vf/vg 0.9571 

Table B.2, Fluid Properties 
Note 1: Fluid densities represent saturated fluid conditions at the stagnation enthalpy.  
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Iteration 1 2 3 4 … 20 
Estimated G (kg/m2 s) 19,182 28,613 32,866 35,359  41,389 
ṁ (kg/s) (=G*Anozzle) 2.430 3.625 4.163 4.479  5.243 
va,max (m/s) 22.01 32.82 37.70 40.56  47.48 
ρu2/2 (Pa) 0.18x106 0.41x106 0.54x106 0.62x106  0.89x106 
Pa,max (Pa) (=P0- ρu2/2) 6.35x106 6.13x106 6.00x106 5.92x106  5.69x106 
Σ’ (Pa/s), Equation A2.3 3.15x108 1.05x109 1.59x109 1.97x109  3.17x109 
Σ’ (Matm/s) 0.0031 0.0103 0.0156 0.0195  0.0312 
(Ps-Pn )Lienhard(Pa),  
Equation A2.2 

0.89x106 0.98x106 1.03x106 1.06x106  1.15x106 

Ps-Pa,max (Pa) -88,242 135,179 264,779 349,083  578,469 
η (Figure 11.1.2.9)  0.3693 0.5337 0.6291 0.6912  0.8600 
(Ps-Pn )Relaxed(Pa),  
Equation 11.1.2.13 

0.33x106 0.53x106 0.65x106 0.74x106  0.99x106 

Pn, (Pa) 5.93x106 5.74x106 5.62x106 5.53x106  5.27x106 
Calculated G, Equation A2.1 28,613 32,866 35,359 36,985  41,412 
Table B.3, Illustrative Example  
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