	<u>Page</u>	<u>Equation</u>	Error	<u>Correction</u>
<u>Tuma / Bagner</u>				
1.	28	2	ΔT	1000
<u>Fauske</u>				
2.	55	1 st line	with =	with \dot{P} =
3.	55	2 nd line	in =	in $\dot{Q}_{\rm g}$ =
4.	56	4 th line	$ ho_{ m o}$	$ ho_{ m o2}$
5.	56	3	М	m
6.	56	4	Q_{r}	Żт
7.	56	4	$Q_{ m d}$	$C_{\rm D}$
8.	56	5	$Q_{\scriptscriptstyle \mathrm{D}}$	$C_{\rm D}$
9.	58	4 th line	in illustrating	in Figure 5 illustrating
10.	58	9 th line	with =	with \dot{T} =
11.	59	31 st line	, =	, $\dot{T} = 0.4$
12.	60	12	ρ	m
Leung				
13.	122	Figure 16	Figure 16	Figure 17. Self-Heat Rate Data for BPO Decomposition from 19 RSST Runs.
14.	123	Figure 17	Figure 17	Figure 16. Self-Heat Rate Data for BPO Decomposition from 7 VSP Runs.
15.	128	14 th line	throughput	delete

International Symposium on Runaway Reactions, Pressure Relief Design and Effluent Handling (1998)

	<u>Page</u>	2 <u>Equation</u>	Error	<u>Correction</u>
16.	128	15 th line	rate.	rate throughout.
17.	133	16 th line	to, a	to a
<u>Gustin</u>				
18.	186	Figure 7	Dewar Test 5. Heat-rate curve.	Dewar Test 5. Pressure corrected for the nitrogen pad gas versus temperature.
19.	187	Figure 8	-	Dewar Test 5. Heat-rate curve.
20.	191	2 nd equation	ТО	T _o
21.	192	2 equations]] ²
22.	194	2 nd equation	$e^{-E/RT}$	$e^{E/RT}$
23.	194	5 th equation	e ^{-Ed/RT}	e ^{Ed/RT}
24.	197	21 st line	thermal initial	thermal inertia
<u>Hawksworth a</u>	nd Ladlow			
25.	210	Table 1	9	7.9
26.	216	first 2 equations	$A_{\rm W} S^{0.556}$	$A_{ m WS}^{0.566}$
<u>Grolmes</u>				
27.	221	1	<i>K</i> =	<i>k</i> =
28.	226	Table 2, Footnote	<i>P</i> = 950	$\rho = 950$
29.	228	10b	W	w
30.	232	26	$\underline{m_{o}}($	$\frac{x_{o}m_{o}}{($

	D	3		
	<u>Page</u>	<u>Equation</u>	Error	<u>Correction</u>
31.	233	27 and 29a	$\frac{N_{\rm gmr} R}{V}$	$\frac{n_{\rm gmr} R}{V}$
32.	233	31	$I_{\text{TEVT}} =$	$I_{\text{tevt}} \approx$
33.	234	33	m _o	-
34.	234	34	$\frac{C_{\rm d}A}{m_{\rm o}}\approx$	$\frac{C_{\rm d} A}{m_{\rm o}} =$
35.	239	Table 5, Title	x = 0.40	x = 0.50

Duh, et al.

36. Caution: Discussions subsequent to presentation of this paper revealed that a copper test cell was used to obtain the data. CHP is very susceptible to metal-induced surface reactions. The data possibly represent a thermally-induced decomposition. A copper-induced (acid-catalyzed) cleavage reaction is indicated by the presence of phenol as one of the decomposition products. This information was not considered during preparation of the paper.

37.	252	1.1	-	$\begin{array}{c} 2 \operatorname{ROOH} \Leftrightarrow \\ [\operatorname{ROOH}]_2 \end{array}$
38.	252	1.2	-	O - H / R - O H - O
39.	260	Between a.5 and a.6	-	Combining equations (a.2), (a.4) and (a.5)
Leung				
40.	319	17 th line	fluid density (p)	fluid density ($ ho$)
41.	319	17 th line	v = 1/p	$v = 1/\rho$
42.	320	3	[]	[2 ∫

	<u>Page</u>	4 <u>Equation</u>	Error	<u>Correction</u>
43.	320	8 th line	where the A parameter	where the ω parameter
44.	320	15 th line	on the <i>A</i> value,	on the ω value,
45.	321	4 th line	an enthalpic flash	an isenthalpic flash
46.	321	8	$rac{G}{\sqrt{P_{ m o}/ ho_{ m o}}}$	$rac{G}{\sqrt{P_{ m o} ho_{ m o}}}$
47.	321	9	$\left(\omega^2 - 2\omega\right)\left(\frac{1-P_{\rm c}}{P_{\rm o}}\right)$	$\left(\omega^2 - 2\omega\right)\left(\frac{1-P_{\rm c}}{P_{\rm o}}\right)^2$
48.	321	10	$\frac{G}{\sqrt{P_{\rm o}/v_{\rm o}}}$	$\frac{G_{\rm c}}{\sqrt{P_{\rm o}/v_{\rm o}}}$
49.	322	13	$rac{G}{\sqrt{P_{ m o} ho_{ m go}}}$	$\frac{G_{\rm c}}{\sqrt{P_{\rm o}\rho_{\rm go}}}$
50.	322	14	$rac{G}{\sqrt{P_{ m o}} ho_{ m go}}$	$rac{G}{\sqrt{P_{ m o}} ho_{ m fo}}$
51.	324	17 th line	(or L cos I)	(or $L \cos \theta$)
52.	324	18 th line	$G^* \equiv$	G* =
53.	325	18	<i>G</i> =	G* =
54.	324	14 th line	and A.	and ω .
55.	325	21	$-\int_{\eta_2}^{\eta_1}$	$-\int_{\eta_1}^{\eta_2}$
56.	325	21	<u>)</u>	<u>)</u> dη
57.	326	10 th line	and A.	And ω .
58.	329	6 th line	the <i>A</i> parameter	the ω parameter
59.	337	18 th line	η_{1} =	$\eta_{_1}$ =

	Page	5 <u>Equation</u>	Error	Correction
60.	337	19 th line	$\eta_{_2}$ =	$\eta_{_2}$ =
61.	341	39	$c^* = \frac{C}{\sqrt{Pv}} =$	$c^* = \frac{c}{\sqrt{Pv}} =$
62.	342	4 th line	by the A	by the ω
63.	342	7 th line	The present A	The present ω
64.	345	7 th .line	with A,	with <i>a</i> ,
65.	347	11 th line	lb_{f} was	lb_{f} was
66.	347	13 th line	an A value	an ω value
67.	351	7 th line	Since $G\sqrt{P_{o} \rho_{o}}$	Since $G/\sqrt{P_{o}\rho_{o}}$
68.	351	last equation	$\left(\frac{m^3/kg}{J/kg}\right)$	$\left(\frac{m^3/kg}{J/kg}\right)^2$
<u>Fauske</u>				
69.	353	1]]
70.	354	2 nd line	$G_{x_o=o}^2$	$G_{x_o = o}$
71.	354	11 th line	$G_{x_o=1}^2$	$G_{x_{o}=1}$
72.	354	17 th line	flows, is	flows, $_{G_{x_o=o}}$ is
73.	354	20 th line	flows is	flows $_{G_{x_o=1}}$ is
74.	355	6 th line	water, flows can	flows $G_{x_0=0}$ can be
75.	355	5	$(T_{o} - C_{o})^{-1/2}$	$(T_{o} C_{o})^{-1/2}$
76.	355	11 th line	not effect the	not affect the
77.	355	18 th line	and is again	and $G_{x_{0}=1}$ is again

	Page	6 <u>Equation</u>	Error	<u>Correction</u>
78.	355	22 nd line	(<i>L</i> < 0.1 m)	(<i>L</i> > 0.1 m)
79.	355	23 rd line	Equation (9)	Equation (8)
<u>Darb</u> y				_
80.	371	8	$(1-\eta)^{\frac{k-1}{k}}$	$(1-\eta^{\frac{k-1}{k}})$
81.	373	11	$\eta_{c} = \left[\frac{1 - \beta^{4} \eta^{\frac{2}{k}}}{\frac{k+1}{2} + \beta^{4} \eta^{\frac{2}{k}}}\right]$	$(1-\eta^{\frac{k-1}{k}})$ $\left(\eta^{\frac{1-k}{k}}-\frac{k+3}{2}\right)^{\frac{k}{k-1}}$
82.	373	15 th line	$0.528 < \eta_c < 0.656$	$0.528 < \eta_c < 0.497$
83.	373	16 th -21 st lines	Theout.	Delete
84.	376	12	$X = \frac{S_{\rm LO} - S_{\rm LO}}{S_{\rm LG}} =$	<i>X</i> =
85.	376	13	$\upsilon = \upsilon_{\rm G} + \upsilon_{\rm L} \left(1 - x\right)$	$\upsilon = \upsilon_{\rm G} x + \upsilon_{\rm L} (1 - x)$
86.	378	21	}	$_{t}$
87.	381	Table 1	$\rho_{\rm L} = c_{\rm o} + P + c_2 + P^2$	$\rho_{\rm L} = c_{\rm o} + c_1 P + c_2 P^2$
88.	382	22	$\left(rac{G_{_{\mathrm{o}}} v_{_{\mathrm{o}}}}{v_{_{n}}} ight)$	$\left(\frac{G_{\rm o}\upsilon_{\rm o}}{\upsilon_{\rm n}}\right)^2$
89.	383	27	$\underline{\omega \ln \eta = (\omega - 1)}$	$\frac{\omega \ln \eta + (\omega - 1)}{\omega \ln \eta + (\omega - 1)}$
90.	383	30	$=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{s}}$	$=\sqrt{\left(\frac{\partial P}{\partial v}\right)}_{s}$
91.	387	18 th line	of 1/3 or 1/3.	of 1/3 or 1/2.

	Daga	7 Equation		Connection
	<u>Page</u>	<u>Equation</u>	<u>Error</u>	<u>Correction</u>
92.	387	40	41	40
93.	388	41	$\left(\frac{\rho_{\rm L}}{\rho_{\rm G}}\right)^{(a_2-1)}$	$\left(\frac{\rho_{\rm L}}{\rho_{\rm G}}\right)^{(a_2+1)}$
94.	391	15 th line	in Eqs. (42)-(43).	in Eqs. (43)-(44).
95.	391	19 th line	of Eqs. (47) and (48)	of Eq. (48) (e.g.
96.	392 and 393	Table 3	Subcooled $L \le 10 \text{ cm}:$ $N_{\text{NE}} = 1$ L > 10 cm, N_{NE}	Subcooled $L \le 10 \text{ cm}:$ N_{NE} L > 10 cm, $N_{\text{NE}} = 1$
97.	394	NOTATION	-	d nozzle diameter
98.	394	NOTATION	$G^* = \sqrt{G/(P_o \rho_{\rm LO})}$	$G^* = G / \sqrt{\left(P_{\rm o} \rho_{\rm LO}\right)}$
99.	395	Subscripts	-	o vessel (stagnation) conditions
<u>Melhem</u>				
100.	432	5	$\Delta T C_{\rm p} V \rho$	ΔTC_{p}
101.	433	7	$\overline{V_{v}-V_{1}}$	$\overline{\left(V_{v}-V_{1} ight)}$
102.	433	10	A in (m ² /1000 kg)	$A (m^2/1000 \text{ kg})$
103.	435	18 th line	= 0and α =	= 0 and α =
104.	435	21 st line	of $P = P_o$ to	of P/P_{\circ} to
105.	447/448 (three places)/ 449	equations	k (ft³/lb mole hr)	k (lb mole/ft ³ hr)
	Page	<u>Equation</u>	<u>Error</u>	<u>Correction</u>

106.	450	28 th line	literature half-life information	literature information
107.	450	1 st equation	9.4672 E+ 19 exp(- 62000	1.0186 E+ 9 exp(- 27675
108.	453	11 th line	(Figure 4) (Figure 5)	(Figure 5) (Figure 6)
109.	453	12 th line	(Figure 6) (Figure 7)	(Figure 7) (Figure 8)
<u>Shaw</u>				
110.	475	Table 7	2,5057	25,057
111.	479	Table 13	Benchmark 8	Benchmark 9
<u>Sheu, et al.</u>				
112.	573	9	$\frac{\partial}{\Pr} \exp\left[-\right]$	$\frac{\delta}{\Pr} \exp\left[-\right]$
<u>Hesse</u>				
113.	587	1 st three equations	replace	$h_1 = R \left[1 + 2\cos\left(\frac{\phi}{3}\right) \right]$ $h_2 = R \left[1 - 2\cos\left(\frac{\phi}{3} + \frac{\pi}{3}\right) \right]$
				$h_3 = R\left[1 - 2\cos\left(\frac{\phi}{3} - \frac{\pi}{3}\right)\right]$
114.	587	6 th line	where φ satisfies	where <i>R</i> is the vessel radius, $C_{f} \ge 0.5$, and φ satisfies
115.	587	9 th line	range (0, 2R) and	range (0, R) and

	<u>Page</u>	9 <u>Equation</u>	Error	Correction
116.	587	9 th line	-	by the mensuration formula
				$A_{\rm CR} = \frac{\pi}{3} \left[\frac{6}{\pi h} \left(1 - C_{\rm f} \right) V - h \right]$
117.	598	3 rd equation	$\rho g \cos \beta +$	ho g +
118.	600	2 nd equation	$k_{\rm v}^3\left(\rho_{\rm l}-\rho_{\rm v}\right)$	$k_{\mathrm{v}}^{3} \rho_{\mathrm{v}} \left(\rho_{\mathrm{l}} - \rho_{\mathrm{v}} \right)$
119.	601	3 rd equation	$\left(rac{c_{ m p}\Delta T_{ m x}}{h_{ m fg}} ight)$	$\left(\frac{c_{\rm p}\Delta T_{\rm x}}{h_{\rm fg}}\right)^{1/5}$
120.	602	1 st equation	$T_{ m oo}$	T_{oo}^{t}
121.	602	1^{st} equation	$\frac{2 k}{c \rho \Delta x^2}$	$\frac{2 k \Delta \phi}{c \rho \Delta x^2}$
122.	602	1 st equation	$q'_{ m wall}$	$g_{_{\mathrm{wall}}}$
123.	603	10 th sentence	Forrest (1985)	Forrest (1995)
124.	611	1 st equation	$e^{1\mathrm{fT}}$	$e^{-\mathrm{fT}}$
Leung				
125.	619	1	$\left(\frac{v}{m_0}\frac{h_{\rm fg}}{v_{\rm fg}}\right)^{1/2}$	$\left(\frac{V}{m_{\rm o}}\frac{h_{\rm fg}}{v_{\rm fg}}\right)^{1/2}$
126.	624	5	-]	-] ^{1/2}
127.	625	Figure 10	9.	5.
128.	629	equation	$\frac{0.864 \text{ in}^2}{5 \text{ gal}}$	$\frac{0.864 \text{ in}^2}{3.26 \text{ gal}}$

	Page	10 <u>Equation</u>	Error	Correction
<u>Nichols</u>				
129.	675	reference 29	Lewis, B. and	29. Lewis, B. and
Huang				
130.	678	12 th line	(± 15%	±15%
131.	693	2 nd line	divide (H into	divide ∆H into
132.	693	5 th line	$(S_{c}^{*} = 2)$	$(S_{c} = 2)$