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Abstract Quantitative Risk Assessment Flowchart Beyond QRA Results

The main purpose of a Quantitative Risk Assessment (QRA) is to evaluate the risk levels of a process due TR . Results from QRA development following
to potential Loss of Containment scenarios (LOCs). Moreover, analysis of detailed QRA results can be the A—  xove 2ok " ‘,'_"-*“*-"' . world-wide risk-based criteria (e.g., refer-

basis for more specific studies for facility and critical equipment siting, and domino effects analysis due to ANALISES — e ‘E F‘] ences [1], [2], [3]) are the basis for emer-
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This poster focuses on illustrating a risk-based fire assessment in order to provide detailed results for REaENCY = o 2 sion-making. With these results, a more

domino effects/escalation analysis. The analysis takes into account the following information: (1) identifi- e [l = dedicated fire assessment can be per-
cation of the total number of fire outcomes (i.e., pool fires, jet fires, or flash fires) which impact a given TOLERABLE — “_"“ 35 “ ﬂ formed by addressing escalation due to

RISK

structure; (2) individual frequency and associated heat flux of each identified outcome. The fire risk-based |\ e DA ) TR domino effects, and also facility siting,
assessment is illustrated by completing the following three steps: (1) identification of structures impacted \ m!“ ) and evaluation of impacts for safety criti-
by a certain heat flux due to fires at a given frequency threshold/criteria; (2) prediction of the Time To Fail- o SSSSS —- cal equipment, occupied buildings,
ure (TTF) of equipment identified in step 1, and (3) estimation of TTF conditions for domino effect/escala- ' 1 j and/or key structures.
tion analysis; i.e., consequence modeling. Figure 01 Figure 02

Simplified Quantitative Risk Assessment (QRA) Flowchart Example of QRA Results: Individual Risk Contours and FN Curve
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Risk-Based Fire Assessment based on Heat Flux Exceedence Analysis
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Safety Critical Equipment (3

A risk-based approach requires the identification of a hazard level (e.g., heat flux due to fires) which will not be exceeded at a given iy i smer
frequency threshold. Heat Flux Exceedance Curves (HFECs) can be developed by applying the following steps: o o ComudatveFrequency Thvesheld

(1) Identification of fire-related outcomes (including both immediate and delayed ignition fires) that impact a given location of z '
interest; i.e., structures or equipment § T e e e
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(2) Frequencies of occurrence of outcomes producing a specific level of heat flux are added E 1
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(3) All cumulative frequencies at different heat flux values are plotted with the aim to identify which structure or equipment is g e e P
affected by a certain heat flux at a given frequency threshold/criteria. Figure 03 illustrates and example with the analysis of four :
Safety critical equipment present in a refinery at different locations. R
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Note that the Safety Critical Equipment 01 (SCEO1) is predicted to be impacted by a heat flux of 37.5 kW-m-2 at a given frequency
threshold of 5.00E-05 yr-1. R 10 20 H. - s @ ” ® % 100
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Wall Dynamics for TTF Prediction and Associated Conditions Analysis of Results and Risk Reduction Measures

Using SuperChems™ [6], SCEO1 is evaluated using a dynamic segmented vessel model. Heat transfer analysis is applied per wall segment: Figure 06 illustrates the failure stress and internal hoop stress for SCEO1 Figure 07 is intended to illustrate how additional mitigation
(1) Ambient heating to wall segment heat transfer options include insulation, solar heating, rain, water sprays, pool fires and flame jets [8]. TTF is predicted when the wall tensile strength intersects the internal measures may impact the TTF [8]. This simulation specifically
(2) The wall segment to fluid heat transfer includes radiation, natural convection, forced convection, film boiling, and pool boiling hoop stress. The hoop stress history confirms that the installed PRV is addresses the SCEO1 evaluation including one (1) inch of

_ : sized appropriately. While a PRV does not ensure the mechanical integri- fire-proof insulation. Results confirm that the equipment is not
Di:jmm Pimuation ™ pressare Histery ty of a system under fire exposure (especially vapor filled), it influences expected to falil.

PSV cycles open - closed

| 1 : the predicted TTF and conditions within in the system.

Equipment Segmentation Scheme

Process Equipment under Fire Exposure Conditions at TTF
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