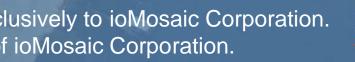
IONOSCIC[®]

Minimizing risk. Maximizing potential.®

DIERS Fall Meeting – October 17, 2022

Best Practices for Calculation of Self Accelerating Reaction Temperatures (T_{SA}) for reaction Systems:

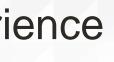

Part I – Data Reduction

Georges A. Melhem, Ph.D., FAIChE melhem.ioMosaic.com

© ioMosaic Corporation

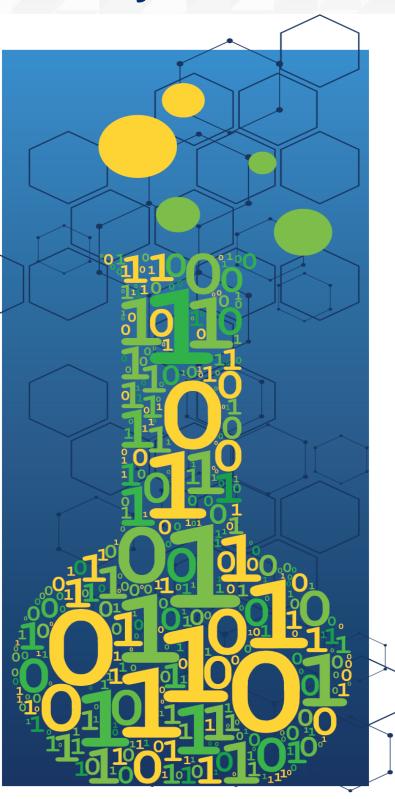
Any information contained in this document is copyrighted, proprietary, and confidential in nature belonging exclusively to ioMosaic Corporation. Any reproduction, circulation, or redistribution is strictly prohibited without explicit written permission of ioMosaic Corporation.

QMS 7.3 7.4.F06 Rev.9



Meet your presenter

- Over 30 years of Engineering and Process Safety Experience
- Pressure Relief and Flare Systems
- PRV Stability and Fluid Dynamics
- **Chemical Reaction Systems**
- Fire, Explosion, and Dispersion Dynamics
- Quantitative and Transportation Risk Analysis
- LNG, LPG, and Hydrogen Safety
- Process Safety Management
- Litigation Support & Public Testimony



G. A. Melhem, Ph.D., FAIChE President and CEO

This tutorial represents part I of a six-part series on "Best Practices for Calculation of Self Accelerating Reaction Temperatures (TSA) for Reaction Systems"

- Part I Data Reduction
- Part II Kinetic Model Development
- Part III Semenov Approach, Simplified and Dynamic
- Part IV Kamenetskii Approach, 1D/2D, Simplified and Dynamic
- Part V Case Studies
- Part VI UN and DOT Requirements

What you are expected to learn from this tutorial includes

- How to prepare a forever green chemical reaction data set
- How to process, visualize, and reduce the data set
- How to analyze the reduced data set
- How to calculate thermal stability indicators
- How to calculate T_{NR} , T_{SA} , and t_{MR}
- How to generate summary reports and graphics

G. A. Melhem, S. Grenier, and L. Ding, *"Thermal stability indicators", an ioMosaic* Corporation white paper, August 2021.

G. A. Melhem, "Development of kinetic models – Part I. Thermal Stability", an ioMosaic Corporation white paper, August 2022.

G. A. Melhem, "Development of kinetic models – Part II. Pressure Relief Systems", an ioMosaic Corporation white paper, August 2022.

Key References:

We use a variety of calorimetry data in the development of process safety information (PSI)

- Typical instruments used include the ARC, APTAC, VSP2, DSC, TGA, TAM, etc.
- Measured data is provided in a variety of formats
- Many formats have been obsoleted over time and access to old data can be lost
- We have developed a universal data taxonomy and data reduction tools that can be used in conjunction with SuperChems to preserve this valuable data
- The data reduction tools include visualization, regression, and simplified kinetic model development
- Data can be exchanged and does not require special tools to read and process

The universal taxonomy is based on flat ASCII files with keywords - Identification

Keyword	Function	l
C	Provide a comment that is not reported in data summary	C
Instrument	Define instrument, ARC, APTAC, RSST, ARSST, VSP, VSP2, DSC, TGA, VariPhi, OTHER	Ir
Author	Define data set author	A
Date	Define data set date	C
Comment	Provide a comment that is reported in data summary	C
SampleDescription	Overall sample description	S +

Usage

- = "This is a comment"
- nstrument = "ARC"

Author = "G. A. Melhem"

- Date = "October 18, 2022"
- Comment = "This is comment 1" Comment = "This is comment 2"

SampleDescription = "EO + Water + NaOH"

The universal taxonomy is based on flat ASCII files with keywords - Time

Keyword	Function	Usage
TimeLocation	Specify index of time data	TimeLocation = 0
TimeUnit	Specify time unit, hr, min, s, day, week, yr	TimeUnit = hr
TimeOffset	Offset time data	TimeOffset = 5.3
TimeStart	Specify starting time for data reduction	TimeStart = 0
TimeEnd	Specify ending time for data reduction	TimeEnd = 7000

The universal taxonomy is based on flat ASCII files with keywords – Mass (always in grams)

Keyword	Function	Usage
MassLocation	Specify mass data index	MassLocation = 2
MassPercentLocation	Specify mass percent data index (optional)	MassPercentLocation = 3
MassRateLocation	Specify change of mass with respect time index (optional)	MassRateLocation = 4

8

The universal taxonomy is based on flat ASCII files with keywords - Temperature

Keyword	Function	Usage
TempLocation	Specify index of temperature data	TempLocation = 0
TempUnit	Specify temperature unit, C, K, R, F	TempUnit = C
TempOffset	Offset temperature data	TempOffset = 0.0
TempRateLocation	Specify change of temperature with time (optional)	TempRateLocation = 1

The universal taxonomy is based on flat ASCII files with keywords - Pressure

Keyword	Function	Usage
PresLocation	Specify index of pressure data	PresLocation = 0
PresUnit	Specify pressure unit, atm, bara, dyn/cm2, ftH2O, g/cm2, inHg, inH2O, kg/cm2a, kPa, Mpa, mmHg, Pa, psia, psig, lb/ft2, pdls/ft2, barg, kPag,Mpag, kg/cm2g, mbara, mbarg	PresUnit = psia
PresRateLocation	Specify change of pressure with time (optional)	PresRateLocation = 1

The universal taxonomy is based on flat ASCII files with keywords – Operating Mode

Keyword	Function	Usage
ModeLocation	Specify index of operating mode data	ModeLocation = 0
Modeldle	Specify numeric value of Idle mode	Modeldle = 13
ModeCalibrate	Specify numeric value of calibration mode	ModeCalibrate = 14
ModeManual	Specify numeric value of manual mode	ModeManual = 15
ModeExotherm	Specify numeric value of exotherm mode, this is needed for automatic calculations by SuperChems	ModeExotherm = 4
ModeWait	Specify numeric value of wait mode	ModeWait = 3
ModeCool	Specify numeric value of cool mode	ModeCool = 2
ModeSearch	Specify numeric value of search mode	ModeSearch = 6
ModeEndotherm	Specify numeric value of endotherm mode	ModeEndotherm = -1
ModeSelect	Specify numeric value of data to be selected	ModeSelect = 4
osaic Corporation		ioMosaic

The universal taxonomy is based on flat ASCII files with keywords (Sample Chemicals, multiple entries)

Keyword	Function	U
SampleName	Component name	Sa
SampleCAS	CAS number, preferred	Sa
SampleID	SuperChems databank ID number (not recommended)	Sa
SampleDesc	Chemical description	Sa
SampleCP	Heat capacity in cal/g/C	S
SampleVolume	Sample volume in ml	S
SampleMass	Sample mass, in gms	Sa
FinalTotalMass	Final mass after test is completed and test cell is opened	Fi

Only of sample identification keyword is required. Use -1 for properties for automatic calculation by SuperChems. Keywords must be provided in this order. Multiple chemicals are allowed using multiple entries.

lsage

- SampleName = "1,3-Butadiene" SampleCAS = "12456-23" SampleID = -1
- SampleDesc = "Proprietary Blend"
 SampleCP = 0.5 cal/g/C
- ampleVolume = -1 ml
- ampleMass = 2.3 gm
- inalTotalMass = 0.6 gm

The universal taxonomy is based on flat ASCII files with keywords (Pad Gas)

Keyword	Function	U
PadGasName	Pad gas component name	Pa
PadGasCAS	CAS number, preferred	P
PadGasID	SuperChems databank ID number (not recommended)	Pa

Only one pad gas entry is allowed.

Isage

PadGasName = "Nitrogen" PadGasCAS = "12456-23" PadGasID = -1

13

The universal taxonomy is based on flat ASCII files with keywords (Test Cell)

Function	Usage
Material name	TestC
CAS number, preferred	TestC
SuperChems databank ID	TestC
number (not recommended)	
Heat capacity in cal/g/C	TestC
Test cell volume in ml	TestC
Test cell mass, in gms	TestC
	 Material name CAS number, preferred SuperChems databank ID number (not recommended) Heat capacity in cal/g/C Test cell volume in ml

Only one test cell data set is allowed

- CellMaterialName = "Hastelloy-C" CellMaterialCAS = "12456-23" CellMaterialID = 1291
- cellCP = 0.1 cal/g/CcellVolume = 9.8 mlcellMass = 17.0 gm

The universal taxonomy is based on flat ASCII files with keywords (Fittings)

Keyword	Function	Usage
FittingsMaterialName	Material name	Fitting
FittingsMaterialCAS	CAS number, preferred	Fitting
FittingsMaterialID	SuperChems databank ID number (not recommended)	Fitting
FittingsCP	Heat capacity in cal/g/C	Fitting
FittingsMass	Fittings mass, in gms	Fitting

Only one fittings data set is allowed

- gsMaterialName = "STEEL" gsMaterialCAS = "12456-23" gsMaterialID = 1291
- gsCP = 0.1 cal/g/CgsMass = 0.1 gm

The universal taxonomy is based on flat ASCII files with keywords (Foil)

Keyword	Function	Usage
FoilMaterialName	Material name	FoilMa
FoilMaterialCAS	CAS number, preferred	FoilMa
FoilMaterialID	SuperChems databank ID number (not recommended)	FoilMa
FoilCP	Heat capacity in cal/g/C	FoilCF
FoilMass	Foil mass, in gms	FoilMa

Only one foil data set is allowed

- aterialName = "Aluminum" aterialCAS = "12456-23" aterialID = -1
- P = -1 cal/g/Cass = 0.05 gm

The universal taxonomy is based on flat ASCII files with keywords (Stirrer)

Keyword	Function	Usage
StirrerMaterialName	Material name	Stirrer
StirrerMaterialCAS	CAS number, preferred	Stirrer
StirrerMaterialID	SuperChems databank ID number (not recommended)	Stirrer
StirrerCP	Heat capacity in cal/g/C	Stirrer
StirrerMass	Stirrer mass, in gms	Stirrer
StirringStateLocation	Stirring state data location	Stirrin
StirringPowerLocation	Stirring power data location, mW	Stirrin
StirringSpeedLocation	Stirring speed data location, RPM	Stirrin
Only one stirrer data set is a	allowed	

- $e^{r}MaterialName} = "STEEL"$ $e^{r}MaterialCAS} = "12456-23"$ $e^{r}MaterialID} = -1$
- rCP = -1 cal/g/C
- rMass = 1.0 gm
- ngStateLocation = 11
- ngPowerLocation = 12
- ngSpeedLocation = 13

The universal taxonomy is based on flat ASCII files with keywords (Heating)

Keyword	Function
HeaterOffsetLocation	Data location index, %
HeaterPowerLocation	Data location index, W
SensitivityLocation	Data location index. uV/mW
HeatFlowLocation	Data location index. mW/mg
HeaterOff	Time of when heating is turned of
HeatTemp	Heating start temperature
HeatRate	Heating rate

. . .

UsageHeaterOffsetLocation = -1HeaterPowerLocation = 5SensitivityLocation = 6HeatFlowLocation = 7

offHeaterOff = 235 minHeatTemp = 25 CHeatRate = 2 C/min

A sample flat ASCII data file is provided below for an ARC data set

```
Author = "A. Iskandar"
     = "06/26/2020"
Date
Instrument = ARC
TestDescription = "acrylonitrile + styrene + methyl ethyl ketone + alpha methyl styrene"
TestDescription = "Test Number 06232020-2 Acyrylonitrile + Styrene + MEK + AMS"
TestDescription = "Project # 20109"
TestDescription = "AMS Inihibited with 15 ppm TBC"
TestDescription = "AN Inihibited with 35-45 ppm MEHQ. ST Inihibited with TBC, most likely 15 ppm."
Comment = "The Methyl EthylKetone, Alpha Methylstyrene, Styrene and Acrylonitrile were"
Comment = "transfered into the test cell under a nitrogen atmosphere."
Comment = "The headspace of the test cell was changed to nitrogen prior to starting the test."
Comment = "The test had 109.7 psia of non-condensible gas at 26.4C."
Comment = "The weightloss was measured to be 0.3417g which includes material stuck in the pressure transfer lines and gas vented."
SampleID = 724
SampleDesc = -1
SampleCP = -1
SampleVolume = -1
SampleMass = 0.712
SampleID = 181
SampleDesc = -1
SampleCP = -1
SampleVolume = -1
SampleMass = 0.533
SampleID = 269
SampleDesc = -1
SampleCP = -1
SampleVolume = -1
SampleMass = 0.09
SampleID = 182
SampleDesc = -1
SampleCP = -1
SampleVolume = -1
SampleMass = 1.712
PadGasName = "Nitrogen"
FinalTotalMass = 2.7053 Lost 0.3417
```

```
TestCellMass = 17.492
TestCellVolume = 9.107
TestCellCP = -1
FittingsMaterialName = Titanium 1239
FittingsMass = 6.5464
FittingsCP = -1
FoilMaterialName = Aluminum 964
FoilMass = 0.0
FoilCP = -1
StirrerMaterial = 971 Iron
StirrerMass = 0.2068
StirrerCP = -1
StirringStateLocation = -1
StirringPowerLocation = -1
StirringSpeedLocation = 7
TimeLocation = 0
TimeUnit = min
TimeOffset = 0.0
TimeStart = 0.01027
TimeEnd = 3718.28833
TempLocation = 1
TempRateLocation = 10
TempUnit = C
TempOffset = 0
PresLocation = 6
PresUnit = psia
PresRateLocation = -1
ModeLocation = 14
ModeSelect = -1
ModeExotherm = 4
ModeHeat = 1
ModeWait = 2
ModeCool = 0
ModeSearch = 3
ModeEndotherm = -1
ModeIdle = -1
ModeCalibrate = -1
ModeManual = -1
```

ioMosaic

A sample flat ASCII data file is provided below for an ARC data set (continued)

C Elasp C Time C (min)	Sample Temp (≌C)	TempSide Heater (≌C)	Temp Top Heater (≌C)	Bottom Heater (ºC)	Spare T/C (ºC)	Sample Pressure (psia)	Stirrer RPM (V)	Not Avail ()	Not Avail ()	Sample TempRate (≌C)	PowerTop Heater (W)	Side Heater (W)	Base Heater (W)	Heater Mode (ModeValue)
"START"														
0.01027	25.51703	23.05807	23.14580	23.21298	25.38579	14.70925	300.00000	0.00000	0.00000	0.01279	0.76541	1.01815	0.93169	1
0.29992	25.51458	23.50858	23.57947	23.62097	25.29669	14.72123	300.00000	0.00000	0.00000	-0.00847	1.04630	0.97567	0.91977	1
1.07788	25.58615	24.90608	25.01926	25.02425	25.28609	14.76992	300.00000	0.00000	0.00000	0.09865	0.53285	0.91162	0.62253	1
1.24476	25.61270	25.12823	25.25347	25.25723	25.29604	14.78186	300.00000	0.00000	0.00000	0.09865	0.59598	0.87545	0.65919	1
1.42336	25.64230	25.35302	25.46811	25.48243	25.30934	14.79436	300.00000	0.00000	0.00000	0.11148	0.74711	0.88085	0.71366	1
1.81534	25.70451	25.80817	25.85828	25.91994	25.34597	14.82314	300.00000	0.00000	0.00000	0.13426	1.02648	0.89520	0.83020	1
2.25211	25.78819	26.26977	26.31689	26.35127	25.39597	14.85535	300.00000	0.00000	0.00000	0.15412	0.78386	0.91450	0.92644	1
2.73455	25.88616	26.73184	26.78453	26.78370	25.45934	14.89015	300.00000	0.00000	0.00000	0.17191	0.88683	0.90752	0.95297	1
3.54187	26.05756	27.42746	27.45474	27.45356	25.57946	14.94670	300.00000	0.00000	0.00000	0.19651	0.85141	0.85308	0.95334	1

. . . .

3698.47998	44.45153	45.97464	43.88140	44.97168	43.71076	127.62756	0.00000	0.00000	0.00000	-0.16586	0.00000	0.00000	0.00000	0
3700.36646	44.12178	45.62494	43.56129	44.63720	43.38284	127.31181	0.00000	0.00000	0.00000	-0.16324	0.00000	0.00000	0.00000	0
3702.25293	43.79672	45.27971	43.24603	44.30772	43.05953	126.99734	0.00000	0.00000	0.00000	-0.16067	0.00000	0.00000	0.00000	0
3704.61108	43.40299	44.85644	42.85992	43.90828	42.66356	126.61069	0.00000	0.00000	0.00000	-0.15757	0.00000	0.00000	0.00000	0
3706.49780	43.08344	44.52288	42.55454	43.61774	42.35167	126.31036	0.00000	0.00000	0.00000	-0.15516	0.00000	0.00000	0.00000	0
3708.38428	42.77441	44.19381	42.25493	43.33002	42.04438	126.01554	0.00000	0.00000	0.00000	-0.15267	0.00000	0.00000	0.00000	0
3710.27100	42.46944	43.86936	41.96059	43.03098	41.74275	125.72382	0.00000	0.00000	0.00000	-0.15043	0.00000	0.00000	0.00000	0
3712.62915	42.10185	43.47036	41.59769	42.65861	41.37130	125.36585	0.00000	0.00000	0.00000	-0.14755	0.00000	0.00000	0.00000	0
3714.51563	41.80218	43.15628	41.31287	42.36635	41.07955	125.08096	0.00000	0.00000	0.00000	-0.14520	0.00000	0.00000	0.00000	0
3716.40186	41.49388	42.84778	41.03292	42.07859	40.79258	124.80350	0.00000	0.00000	0.00000	-0.14301	0.00000	0.00000	0.00000	0
3718.28833	41.22810	42.54331	40.75578	41.79048	40.50894	124.52996	0.00000	0.00000	0.00000	-0.14089	0.00000	0.00000	0.00000	0
"END"														

ioMosai 20

The data reduction tools in SuperChems were upgraded and enhanced

Current Selection	Z-DEFAULT-DTBP-DECOMPOSITION	FILTER * [2/2]
escription	di-t-Butyl Peroxide Decomposition in Toluene	
NEW	Chemical Reaction Z-DEFAULT-DTBP-DECOMPOSITION	User selected dynamic tools
	Z-DEFAULT-H2O2-DECOMPOSITION	
🛃 EDIT		Select Tools Multiple Data Sets
		6
		Reduce Measured Data
COPY		Fit Data
RENAME		
		Load ASCII Data Set
IMPORT		
		Analyze ASCII Reduced D
DELETE		
A		Static tools
A DONE		🖺 🗐 📥 🔀 单

View multiple data sets from multiple instruments

Access data reduction tool

Detailed kinetic model fitting tool

Load a reduced data set for further processing and regression

Access data regression tools

11 🔊 🖉

Measured data can be filtered, smoothed, truncated, and rewritten as different data sets

Page setup		
Print setup		
Print preview		
Print		
Save As		
Help index		
Launch a new i	nstance	
Exit		

Files	Smo	oth	Manage	View	Kinetics	Export	٨d	/anced	
	~	P (F	FT)						
		P (S	oplines)						
		dP/	dt (FFT)						
		dP/	dt (Splines)					
		T (F	FT)						o chu
		T (S	plines)					~	Open/Edit Mea
		dT/	dt (FFT)						Load a New M
		dT/	dt (Splines)						
		Mas	ss (FFT)						Truncate - Tim
		Ma	ss (Splines)						Truncate - Tem
		dM,	/dt (FFT)						
		dM,	/dt (Spline	5)					Save Data File

[]

easured Data File

Aeasured Data File

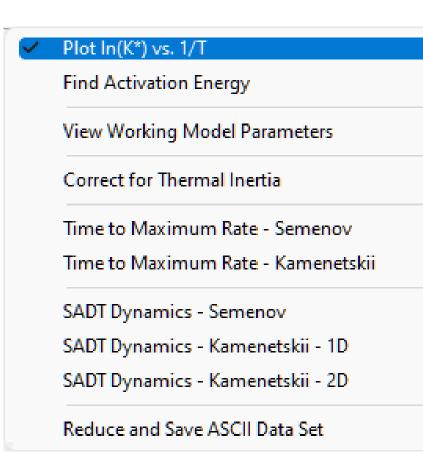
ne

nperature

The view and kinetics options provide visualization, simplified, and detailed data analysis and modeling

Overlay Vapor Pressure - 1 Component
 Overlay Vapor Pressure - 2 Components

Plot vs. Time


Plot vs. Temperature

Plot vs. Inverse Temperature

Plot vs. dT/dt

Plot vs. dP/dt

Data Summary

Multiple data sets can be visualized with advanced features enabling time dependent meteorological data sets to be used

Export - Group Reporting

Export - Scenario Specific Two-Phase Vessel Dynamics

Export - Scenario Specific Gas-Phase Vessel Dynamics

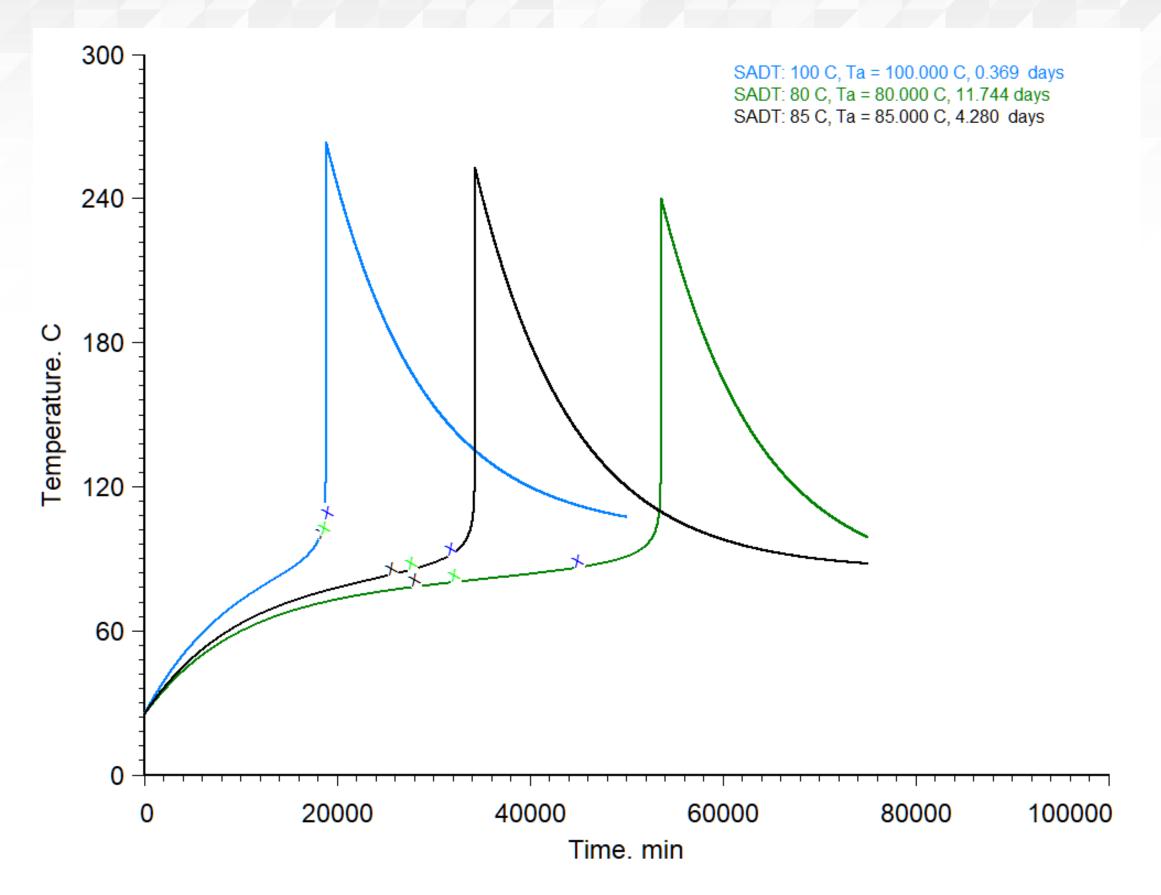
Erase - Group Reporting Export

Erase - Scenario Specific Two-Phase Vessel Dynamics Export

Erase - Scenario Specific Gas-Phase Vessel Dynamics Export

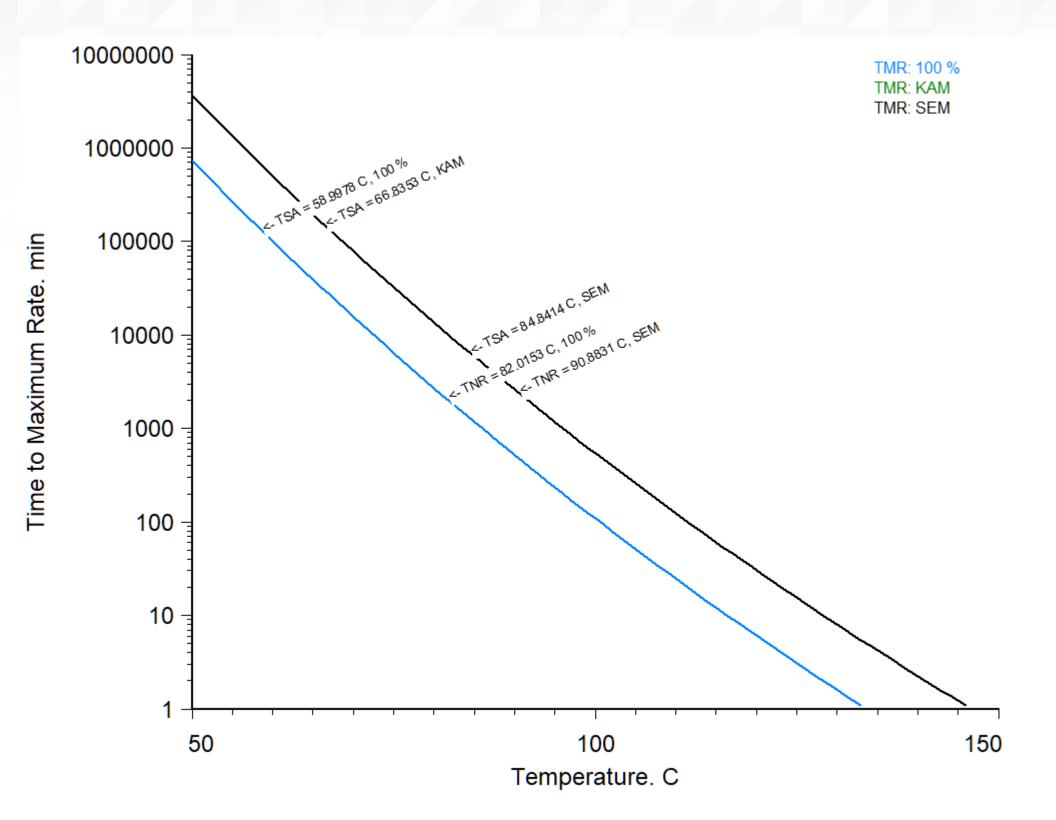
Plot Multiple Data Sets

Attach site object to SADT dynamics


Remove site object from SADT dynamics

Attach vessel object to SADT dynamics

Remove vessel object from SADT dynamics



An SADT multiple data set calculated using simplified kinetics

Quick estimates of TSA and TNR can be obtained following data reduction

Conclusions and recommendation

A complete framework for the reduction, analysis, kinetic model development, and scaleup of chemical reactivity data is now provided in SuperChems v11.5

Recommended additional reading

- G. A. Melhem, "Relief systems last line of defense, only line of defense?", Process Safety Progress, vol 25, No. 4, December 2006
- G. A. Melhem and Peter Howell, "<u>Designing Emergency Relief Systems for Runaway</u> <u>Reactions</u>", Chemical Engineering Progress, September 2005
- G. A. Melhem, "Calculate phase and chemical equilibria using Process Safety Office® SuperChems Expert[™]", an ioMosaic Corporation white paper, March 2021.
- G. A. Melhem, "*Polymerization modeling for emergency relief systems*", an ioMosaic Corporation white paper, July 2020.
- G. A. Melhem, "Polymerization reactions inhibitor modeling styrene and butyl acrylate incidents case studies", an ioMosaic Corporation white paper, July 2020.
- G. A. Melhem, "Quickly develop chemical interaction matrices with SuperChems", an ioMosaic Corporation white paper, March 2018.
- G. A. Melhem, "Systematic evaluation of chemical reaction hazards", an ioMosaic Corporation white paper, August 2022.

Recommended additional reading (continued)

- G. A. Melhem, "An advanced method for the estimation of reaction stoichiometry and rates from ARC data", an ioMosaic Corporation white paper, August 2022.
- G. A. Melhem, S. Grenier, and L. Ding, "*Thermal stability indicators*", an ioMosaic Corporation white paper, August 2022.
- G. A. Melhem, "Development of kinetic models Part I. Thermal Stability", an ioMosaic Corporation white paper, August 2022.
- G. A. Melhem, "*Development of kinetic models Part II. Pressure Relief Systems*", an ioMosaic Corporation white paper, August 2022.
- G. A. Melhem, "<u>Advanced pressure relief design using computer simulation</u>", an ioMosaic Corporation white paper, August 2022.

For more information, please contact

G. A. Melhem, Ph.D., FAIChE melhem@iomosaic.com C: 603-475-3646

ioMosaic Corporation 93 Stiles Road Salem, NH 03079

Worldwide Locations

Let's talk about your safety needs. Want to schedule a meeting or ask us a question? Call us or email us and we'll be in touch right away.

Salem Office 93 Stiles Road

Salem, NH 03079 US Tel: 603.893.7009

Fax: 603.386.6522 Email: sales@iomosaic.com

Houston Office

Bahrain Office Suite 161 / 162 / 163 - Platinum Tower, Building 190 Road 2803 Block 428 Al Seef, Kingdom of Bahrain

Tel: +973.17.561480 Fax: 973.17.911473 Email: sales@iomosaic.com

UK Office 16-18 Queen Square Bath, BA1 2HN UK

Tel: +44 (0)1225 530 510 Fax: +44 (0)1225 430 225 Email: sales@iomosaic.com

1900 St. James Place, Suite 700 Houston, TX 77056 US

Tel: 713,490,5220 Fax: 832.553.7283 Email: sales@iomosaic.com

Minneapolis Office 401 North 3rd Street, Suite 410 Minneapolis, MN 55401 US

Tel: 612.338.1669 Fax: 832.553.7283 Email: sales@iomosaic.com

California Office 2001 Addison Street, 3rd Floor Berkeley, CA 94704 US

Tel: 510.646.0035 Fax: 832.553.7283 Email: sales@iomosaic.com

About ioMosaic Corporation

Through innovation and dedication to continual improvement, ioMosaic has become a leading provider of integrated process safety and risk management solutions. ioMosaic has expertise in a wide variety of areas, including pressure relief systems design, process safety management, expert litigation support, laboratory services, training, and software development.

ioMosaic offers integrated process safety and risk management services to help you manage and reduce episodic risk. Because when safety, efficiency, and compliance are improved, you can sleep better at night. Our extensive expertise allows us the flexibility, resources, and capabilities to determine what you need to reduce and manage episodic risk, maintain compliance, and prevent injuries and catastrophic incidents.

Our mission is to help you protect your people, plant, stakeholder value, and our planet.

For more information on ioMosaic, please visit: www.ioMosaic.com

